期刊论文详细信息
BMC Systems Biology
Multilevel omic data integration in cancer cell lines: advanced annotation and emergent properties
Christine Nardini1  Suning Chen2  Valentina Devescovi1  Yuanhua Liu1 
[1] Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China;First Affiliated Hospital of Suzhou University, Jiangsu Institute of Hematology, , Suzhou, China
关键词: NCI-60 cell panel;    Linear discriminant analysis;    Factor analysis;    Emergent property;    Multi-omic;   
Others  :  1143210
DOI  :  10.1186/1752-0509-7-14
 received in 2012-05-10, accepted in 2013-01-29,  发布年份 2013
PDF
【 摘 要 】

Background

High-throughput (omic) data have become more widespread in both quantity and frequency of use, thanks to technological advances, lower costs and higher precision. Consequently, computational scientists are confronted by two parallel challenges: on one side, the design of efficient methods to interpret each of these data in their own right (gene expression signatures, protein markers, etc.) and, on the other side, realization of a novel, pressing request from the biological field to design methodologies that allow for these data to be interpreted as a whole, i.e. not only as the union of relevant molecules in each of these layers, but as a complex molecular signature containing proteins, mRNAs and miRNAs, all of which must be directly associated in the results of analyses that are able to capture inter-layers connections and complexity.

Results

We address the latter of these two challenges by testing an integrated approach on a known cancer benchmark: the NCI-60 cell panel. Here, high-throughput screens for mRNA, miRNA and proteins are jointly analyzed using factor analysis, combined with linear discriminant analysis, to identify the molecular characteristics of cancer. Comparisons with separate (non-joint) analyses show that the proposed integrated approach can uncover deeper and more precise biological information. In particular, the integrated approach gives a more complete picture of the set of miRNAs identified and the Wnt pathway, which represents an important surrogate marker of melanoma progression. We further test the approach on a more challenging patient-dataset, for which we are able to identify clinically relevant markers.

Conclusions

The integration of multiple layers of omics can bring more information than analysis of single layers alone. Using and expanding the proposed integrated framework to integrate omic data from other molecular levels will allow researchers to uncover further systemic information. The application of this approach to a clinically challenging dataset shows its promising potential.

【 授权许可】

   
2013 Liu et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150329022512933.pdf 1138KB PDF download
Figure 3. 102KB Image download
Figure 2. 92KB Image download
Figure 1. 114KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Shankavaram UT, Reinhold WC, Nishizuka S, Major S, Morita D, Chary KK, Reimers MA, Scherf U, Kahn A, Dolginow D, Cossman J, Kaldjian EP, Scudiero DA, Petricoin E, Liotta L, Lee JK, Weinstein JN: Transcript and protein expression profiles of the NCI-60 cancer cell panel: an integromic microarray study. Mol Cancer Ther 2007, 6(3):820-832.
  • [2]Liu H, D’Andrade P, Fulmer-Smentek S, Lorenzi P, Kohn KW, Weinstein JN, Pommier Y, Reinhold WC: mRNA and microRNA expression profiles of the NCI-60 integrated with drug activities. Mol Cancer Ther 2010, 9(5):1080-1091.
  • [3]Fronza R, Tramonti M, Atchley WR, Nardini C: Joint analysis of transcriptional and post- transcriptional brain tumor data: searching for emergent properties of cellular systems. BMC Bioinformatics 2011, 12:86-86. BioMed Central Full Text
  • [4]Cancer Genome Atlas Research Network: Integrated genomic analyses of ovarian carcinoma. Nature 2011, 474(7353):609-615.
  • [5]Jolliffe IT: Principal Component Analysis. New York: Springer; 1986.
  • [6]Johnson RA, Wichern DW: Applied Multivariate Statistical Analysis. Upper Saddle River, NJ: Prentice Hall; 2002.
  • [7]Langley P, Iba W, Thompson K: An analysis of Bayesian classifiers. Proceedings of AAAI 1992, 92:223-228.
  • [8]Friedman N: The bayesian structural em algorithm. Proc Conference on Uncertainty in Artif Intelligence 1998, 98:129-138.
  • [9]Persson O, Krogh M, Saal LH, Englund E, Liu J, Parsons R, Mandahl N, Borg A, Widegren B, Salford LG: Microarray analysis of gliomas reveals chromosomal position-associated gene expression patterns and identifies potential immunotherapy targets. J Neurooncol 2007, 85:11-24.
  • [10]Furey TS, Cristianini N, Duffy N, Bednarski DW, Schummer M, Haussler D: Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics 2000, 16(10):906-14.
  • [11]Theilhaber J, Connolly T, Roman-Roman S, Bushnell S, Jackson A, Call K, Garcia T, Baron R: Finding genes in the C2C12 osteogenic pathway by k-nearest-neighbor classification of expression data. Genome Res 2002, 12:165-76.
  • [12]Liu T, Papagiannakopoulos T, Puskar K, Qi S, Santiago F, Clay W, Lao K, Lee Y, Nelson SF, Kornblum HI, Doyle F, Petzold L, Shraiman B, Kosik KS: Detection of a microRNA signal in an in vivo expression set of mRNAs. PLoS One 2007, 2(8):e804.
  • [13]Lanza G, Ferracin M, Gafà R, Veronese A, Spizzo R, Pichiorri F, gong Liu C, Calin GA, Croce CM, Negrini M: mRNA/microRNA gene expression profile in microsatellite unstable colorectal cancer. Mol Cancer 2007, 6:54. BioMed Central Full Text
  • [14]Panguluri SK, Bhatnagar S, Kumar A, McCarthy JJ, Srivastava AK, Cooper NG, Lundy RF, Kumar A: Genomic profiling of messenger RNAs and microRNAs reveals potential mechanisms of TWEAK-induced skeletal muscle wasting in mice. PLoS One 2010, 5(1):e8760.
  • [15]Shankavaram UT, Reinhold WC, Nishizuka S, Major S, Morita D, Chary KK, Reimers MA, Scherf U, Kahn A, Dolginow D, Cossman J, Kaldjian EP, Scudiero DA, Petricoin E, Liotta L, Lee JK, Weinstein JN: Transcript and protein expression profiles of the NCI-60 cancer cell panel: an integromic microarray study. Mol Cancer Ther 2007, 6(3):820-832.
  • [16]Kitano H: Systems Biology: A Brief Overview. Science 2002, 295(5560):1662-1664.
  • [17]Hocquette JF: Where are we in genomics? J Physiol Pharmacol 2005, 56(3):37-70.
  • [18]Ahn AC, Tewari M, Poon CS, Phillips RS: The Limits of Reductionism in Medicine: Could Systems Biology Offer an Alternative? PLoS Med 2006, 3(6):e208.
  • [19]Ahn AC, Tewari M, Poon CS, Phillips RS: The Clinical Applications of a Systems Approach. PLoS Med 2006, 3(7):e209.
  • [20]Tebaldi T, Re A, Viero G, Pegoretti I, Passerini A, Blanzieri E, Quattrone A: Widespread uncoupling between transcriptome and translatome variations after a stimulus in mammalian cells. BMC Genomics 2012, 13:220-220. BioMed Central Full Text
  • [21]Shen R, Olshen AB, Ladanyi M: Integrative clustering of multiple genomic data types using a joint latent variable model with application to breast and lung cancer subtype analysis. Bioinformatics 2009, 25(22):2906-2912.
  • [22]Vaske CJ, Benz SC, Sanborn JZ, Earl D, Szeto C, Zhu J, Haussler D, Stuart JM: Inference of patient-specific pathway activities from multi-dimensional cancer genomics data using PARADIGM. Bioinformatics 2010, 26(12):237-245.
  • [23]Sokilde R, Kaczkowski B, Podolska A, Cirera S, Gorodkin J, Moller S, Litman T: Global microRNA analysis of the NCI-60 cancer cell panel. Mol Cancer Ther 2011, 10(3):375-384.
  • [24]Blower PE, Verducci JS, Lin S, Zhou J, Chung JH, Dai Z, Liu CG, Reinhold W, Lorenzi PL, Kaldjian EP, Croce CM, Weinstein JN, Sadee W: MicroRNA expression profiles for the NCI-60 cancer cell panel. Mol Cancer Ther 2007, 6(5):1483-1491.
  • [25]Li SD, Tagami T, Ho YF, Yeang CH: Deciphering causal and statistical relations of molecular aberrations and gene expressions in NCI-60 cell lines. BMC Syst Biol 2011, 5:186-186. BioMed Central Full Text
  • [26]Williams AE: Functional aspects of animal microRNAs. Cell Mol Life Sci 2008, 65(4):545-62.
  • [27]Liu H, D’Andrade P, Fulmer-Smentek S, Lorenzi P, Kohn KW, Weinstein JN, Pommier Y, Reinhold WC: mRNA and microRNA expression profiles of the NCI-60 integrated with drug activities. Mol Cancer Ther 2010, 9(5):1080-1091.
  • [28]Bolstad B, Irizarry R, Strand M, Speed T: A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 2003, 19(2):185-193.
  • [29]Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G: Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 2000, 25:25-29.
  • [30]Thomas PD, Campbell MJ, Kejariwal A, Mi H, Karlak B, Daverman R, Diemer K, Muruganujan A, Narechania A: PANTHER: a library of protein families and subfamilies indexed by function. Genome Res 2003, 13(9):2129-2141.
  • [31]Nishimura D: BioCarta. Biotech Software & Internet Report 2001, 2(3):117-120.
  • [32]Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M: The KEGG resource for deciphering the genome. Nucleic Acids Res 2004, 32(Database issue):277-280.
  • [33]Vastrik I, D’Eustachio P, Schmidt E, Joshi-Tope G, Gopinath G, Croft D, de Bono B, Gillespie M, Jassal B, Lewis S, Matthews L, Wu G, Birney E, Stein L: Reactome: a knowledge base of biologic pathways and processes. Genome Biol 2007, 8(3):R39. BioMed Central Full Text
  • [34]Huang DW, Sherman BT, Lempicki RA: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc, http://view.ncbi.nlm.nih.gov/pubmed/19131956 2009, 4:44-57. [http://view.ncbi.nlm.nih.gov/pubmed/19131956 webcite]
  • [35]Grimson A, Farh KK, Johnston WK, Garrett-Engele P, Lim LP, Bartel DP: MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell 2007, 27:91-105.
  • [36]Tusher VG, Tibshirani R, Chu G: Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA 2001, 98(9):5116-5121.
  • [37]Boyle GM, Woods SL, Bonazzi VF, Stark MS, Hacker E, Aoude LG, Dutton-Regester K, Cook AL, Sturm RA, Hayward NK: Melanoma cell invasiveness is regulated by miR-211 suppression of the BRN2 transcription factor. Pigment Cell Melanoma Res 2011, 24(3):525-537.
  • [38]Sakurai E, Maesawa C, Shibazaki M, Yasuhira S, Oikawa H, Sato M, Tsunoda K, Ishikawa Y, Watanabe A, Takahashi K, Akasaka T, Masuda T: Downregulation of microRNA-211 is involved in expression of preferentially expressed antigen of melanoma in melanoma cells. Int J Oncol 2011, 39(3):665-672.
  • [39]Streicher KL, Zhu W, Lehmann KP, Georgantas RW, Morehouse CA, Brohawn P, Carrasco RA, Xiao Z, Tice DA, Higgs BW, Richman L, Jallal B, Ranade K, Yao Y: A novel oncogenic role for the miRNA-506-514 cluster in initiating melanocyte transformation and promoting melanoma growth. Oncogene 2012, 31(12):1558-70.
  • [40]Fernandez LP, Milne RL, Pita G, Floristan U, Sendagorta E, Feito M, Avilés JA, Martin-Gonzalez M, Lázaro P, Benítez J, Ribas G: Pigmentation-related genes and their implication in malignant melanoma susceptibility. Exp Dermatol 2009, 18(7):634-642.
  • [41]Vavricka CJ, Ray KW, Christensen BM, Li J: Purification and N-glycosylation analysis of melanoma antigen dopachrome tautomerase. Protein J 2010, 29(3):204-212.
  • [42]Saldana-Caboverde A, Kos L: Roles of endothelin signaling in melanocyte development and melanoma. Pigment Cell Melanoma Res 2010, 23(2):160-170.
  • [43]Ghanem G, Fabrice J: Tyrosinase related protein 1 (TYRP1/gp75) in human cutaneous melanoma. Mol Oncol 2011, 5(2):150-155.
  • [44]Szklarczyk D, Franceschini A, Kuhn M, Simonovic M, Roth A, Minguez P, Doerks T, Stark M, Muller J, Bork P, Jensen LJ, von Mering C: The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res 2011, 39(Database issue):D561-D568.
  • [45]Fang D, Leishear K, Nguyen TK, Finko R, Cai K, Fukunaga M, Li L, Brafford PA, Kulp AN, Xu X, Smalley KS, Herlyn M: Defining the conditions for the generation of melanocytes from human embryonic stem cells. Stem Cells 2006, 24(7):1668-1677.
  • [46]Dorsky RI, Raible DW, Moon RT: Direct regulation of nacre, a zebrafish MITF homolog required for pigment cell formation, by the Wnt pathway. Genes Dev 2000, 14(2):158-162.
  • [47]Arozarena I, Bischof H, Gilby D, Belloni B, Dummer R, Wellbrock C: In melanoma, beta-catenin is a suppressor of invasion. Oncogene 2011, 30(45):4531-4543.
  • [48]Chien AJ, Conrad WH, Moon RT: A Wnt survival guide: from flies to human disease. J Invest Dermatol 2009, 129(7):1614-1627.
  • [49]Lucero OM, Dawson DW, Moon RT, Chien AJ: A re-evaluation of the ”oncogenic” nature of Wnt/beta-catenin signaling in melanoma and other cancers. Curr Oncol Rep 2010, 12(5):314-318.
  • [50]Han LY, Fletcher MS, Urbauer DL, Mueller P, Landen CN, Kamat AA, Lin YG, Merritt WM, Spannuth WA, Deavers MT, De Geest K, Gershenson DM, Lutgendorf SK, Ferrone S, Sood AK: HLA class I antigen processing machinery component expression and intratumoral T-Cell infiltrate as independent prognostic markers in ovarian carcinoma. Clin Cancer Res 2008, 14(11):3372-3379.
  • [51]Gooden MJ, de Bock GH, Leffers N, Daemen T, Nijman HW: The prognostic influence of tumour-infiltrating lymphocytes in cancer: a systematic review with meta-analysis. Br J Cancer 2011, 105:93-103.
  • [52]Hanahan D, Weinberg RA: The hallmarks of cancer. Cell 2000, 100:57-70.
  • [53]Kelly ZL, Michael A, Butler-Manuel S, Pandha HS, Morgan RG: HOX genes in ovarian cancer. J Ovarian Res 2011, 4:16-16. BioMed Central Full Text
  • [54]Ko SY, Lengyel E, Naora H: The Müllerian HOXA10 gene promotes growth of ovarian surface epithelial cells by stimulating epithelial-stromal interactions. Mol Cell Endocrinol 2010, 317(1-2):112-119.
  • [55]Naora H: Developmental patterning in the wrong context: the paradox of epithelial ovarian cancers. Cell Cycle 2005, 4(8):1033-1035.
  • [56]Komiyama S, Kurahashi T, Ishikawa M, Tanaka K, Komiyama M, Mikami M, Udagawa Y: Expression of TGF1 and its receptors is associated with biological features of ovarian cancer and sensitivity to paclitaxel/carboplatin. Oncol Rep 2011, 25(4):1131-1138.
  • [57]Nevadunsky NS, Barbieri JS, Kwong J, Merritt MA, Welch WR, Berkowitz RS, Mok SC: RUNX3 protein is overexpressed in human epithelial ovarian cancer. Gynecol Oncol 2009, 112(2):325-330.
  • [58]van Jaarsveld MT, Helleman J, Berns EM, Wiemer EA: MicroRNAs in ovarian cancer biology and therapy resistance. Int J Biochem Cell Biol 2010, 42(8):1282-1290.
  • [59]Nam EJ, Yoon H, Kim SW, Kim H, Kim YT, Kim JH, Kim JW, Kim S: MicroRNA expression profiles in serous ovarian carcinoma. Clin Cancer Res 2008, 14(9):2690-2695.
  • [60]Tanaka K, Hayashi H, Hamada C, Khoury G, Jay G: Expression of major histocompatibility complex class I antigens as a strategy for the potentiation of immune recognition of tumor cells. Proc Natl Acad Sci USA 1986, 83(22):8723-8727.
  • [61]Yoshihara K, Tsunoda T, Shigemizu D, Fujiwara H, Hatae M, Fujiwara H, Masuzaki H, Katabuchi H, Kawakami Y, Okamoto A, Nogawa T, Matsumura N, Udagawa Y, Saito T, Itamochi H, Takano M, Miyagi E, Sudo T, Ushijima K, Iwase H, Seki H, Terao Y, Enomoto T, Mikami M, Akazawa K, Tsuda H, Moriya T, Tajima A, Inoue I: Tanaka K, Japanese Serous Ovarian Cancer Study Group: High-risk ovarian cancer based on 126-gene expression signature is uniquely characterized by downregulation of antigen presentation pathway. Clin Cancer Res 2012, 18(5):1374-1385.
  • [62]Khong HT, Restifo NP: Natural selection of tumor variants in the generation of ”tumor escape” phenotypes. Nat Immunol 2002, 3(11):999-1005.
  • [63]Dunn GP, Koebel CM, Schreiber RD: Interferons, immunity and cancer immunoediting. Nat Rev Immunol 2006, 6(11):836-848.
  • [64]Lee H, Park CS, Deftereos G, Morihara J, Stern JE, Hawes SE, Swisher E, Kiviat NB, Feng Q: MicroRNA expression in ovarian carcinoma and its correlation with clinicopathological features. World J Surg Oncol 2012, 10:174-174. BioMed Central Full Text
  • [65]Resnick KE, Alder H, Hagan JP, Richardson DL, Croce CM, Cohn DE: The detection of differentially expressed microRNAs from the serum of ovarian cancer patients using a novel real-time PCR platform. Gynecol Oncol 2009, 112:55-59.
  • [66]White NM, Chow TF, Mejia-Guerrero S, Diamandis M, Rofael Y, Faragalla H, Mankaruous M, Gabril M, Girgis A, Yousef GM: Three dysregulated miRNAs control kallikrein 10 expression and cell proliferation in ovarian cancer. Br J Cancer 2010, 102(8):1244-1253.
  • [67]Zhang L, Huang J, Yang N, Greshock J, Megraw MS, Giannakakis A, Liang S, Naylor TL, Barchetti A, Ward MR, Yao G, Medina A, O’brien-Jenkins A, Katsaros D, Hatzigeorgiou A, Gimotty PA, Weber BL, Coukos G: microRNAs exhibit high frequency genomic alterations in human cancer. Proc Natl Acad Sci USA 2006, 103(24):9136-9141.
  文献评价指标  
  下载次数:19次 浏览次数:19次