期刊论文详细信息
BMC Microbiology
Comparative genome analysis of an avirulent and two virulent strains of avian Pasteurella multocida reveals candidate genes involved in fitness and pathogenicity
Robert E Briggs2  Samuel K Maheswaran1  Fred M Tatum2  Melissa Hauglund2  Samuel S Hunter3  Juan E Abrahante1  Timothy J Johnson1 
[1] Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, Minnesota, USA;National Animal Disease Center, Agricultural Research Service, US Department of Agriculture, Ames, Iowa, USA;Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, Idaho, USA
关键词: Pathogenicity;    Fowl cholera;    Fitness;    Avian;    Virulence;    Genome;    Genomics;    Pasteurella multocida;   
Others  :  1143721
DOI  :  10.1186/1471-2180-13-106
 received in 2013-01-02, accepted in 2013-05-06,  发布年份 2013
PDF
【 摘 要 】

Background

Pasteurella multocida is the etiologic agent of fowl cholera, a highly contagious and severe disease of poultry causing significant mortality and morbidity throughout the world. All types of poultry are susceptible to fowl cholera. Turkeys are most susceptible to the peracute/acute forms of the disease while chickens are most susceptible to the acute and chronic forms of the disease. The whole genome of the Pm70 strain of P. multocida was sequenced and annotated in 2001. The Pm70 strain is not virulent to chickens and turkeys. In contrast, strains X73 and P1059 are highly virulent to turkeys, chickens, and other poultry species. In this study, we sequenced the genomes of P. multocida strains X73 and P1059 and undertook a detailed comparative genome analysis with the avirulent Pm70 strain. The goal of this study was to identify candidate genes in the virulent strains that may be involved in pathogenicity of fowl cholera disease.

Results

Comparison of virulent versus avirulent avian P. multocida genomes revealed 336 unique genes among the P1059 and/or X73 genomes compared to strain Pm70. Genes of interest within this subset included those encoding an L-fucose transport and utilization system, several novel sugar transport systems, and several novel hemagglutinins including one designated PfhB4. Additionally, substantial amino acid variation was observed in many core outer membrane proteins and single nucleotide polymorphism analysis confirmed a higher dN/dS ratio within proteins localized to the outer membrane.

Conclusions

Comparative analyses of highly virulent versus avirulent avian P. multocida identified a number of genomic differences that may shed light on the ability of highly virulent strains to cause disease in the avian host, including those that could be associated with enhanced virulence or fitness.

【 授权许可】

   
2013 Johnson et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150329214940574.pdf 1152KB PDF download
Figure 4. 50KB Image download
Figure 3. 67KB Image download
Figure 2. 137KB Image download
Figure 1. 53KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Christensen JP, Bisgaard M: Avian pasteurellosis: taxonomy of the organisms involved and aspects of pathogenesis. Avian Path 1997, 26:461-483.
  • [2]Christenson JP, Bisgaard M: Fowl Cholera. Rev Sci Tech 2000, 19:626-637.
  • [3]Wilkie IW, Harper M, Boyce JD, Adler B: Pasteurella multocida: Diseases and Pathogenesis. Curr Top Microbiol Immunol 2012, 361:1-22.
  • [4]Carter GR: Studies on Pasteurella multocida. A hemagglutination test for the identification of serological types. Amer J Vet Res 1955, 16:481-484.
  • [5]Carter GR: A new serological type of Pasteurella multocida from Central Africa. Vet Rec 1961, 73:1052.
  • [6]Heddleston KL, Gallagher JE, Rebers PA: Fowl cholera: Gel diffusion precipitin test for serotyping Pasteurella multocida from avian species. Avian Dis 1972, 16:925-936.
  • [7]Carter GR, Chengappa MM: Recommendations for a standard system of designating serotypes of Pasteurella multocida. Proceedings of the 24th Amer. Assoc. Veterinary Laboratory Diagnosticians 1981, 24:37-42.
  • [8]Rhodes KR, Rimler RB: Somatic serotypes of Pasteurella multocida strains isolated from avian hosts (1976–1988). Avian Dis 1990, 34:193-195.
  • [9]Lee MD, Wooley RE, Glisson JR, Brown J: Comparison of Pasteurella multocida serotype 3,4 isolates from turkeys with fowl cholera. Avian Dis 1988, 32:501-508.
  • [10]Webster LT: The epidemiology of fowl cholera. J Exp Med 1930, 51:219-223.
  • [11]Petersen KD, Christensen JP, Permin A, Bisgaard M: Virulence of Pasteurella multocida subsp. multocida isolated from outbreaks of fowl cholera in wild birds for domestic poultry and game birds. Avian Pathol 2001, 30:27-31.
  • [12]Heddleston KL, Rebers PA: Properties of free endotoxin from Pasteurella multocida. Am J Vet Res 1975, 36:573-574.
  • [13]Rhodes KR, Rimler RB: Effect of Pasteurella multocida endotoxins on turkey poults. Avian Dis 1987, 31:523-526.
  • [14]Heddleston KL, Rebers PA, Ritchie AE: Immunizing and toxic properties of particulate antigens from two immunogenic types of Pasteurella multocida of avian origin. J Immunol 1966, 96:124-133.
  • [15]May BJ, Zhang Q, Li LL, Paustian ML, Whitman TS, Kapur V: Complete genome sequence of Pasteurella multocida Pm70. Proc Natl Acad Sci USA 2001, 98:3460-3465.
  • [16]Steenbergen SM, Lichtensteiger CA, Caughlan R, Garfinkle J, Fuller TE, Vimr ER: Sialic acid metabolism and systemic pasteurellosis. Infect Immun 2005, 73:1284-1294.
  • [17]Steen JA, Steen JA, Harrison P, Seemann T, Wilkie I, Harper M, Adler B, Boyce JD: Fis is essential for capsule production in Pasteurella multocida and regulates expression of other important virulence factors. PLoS Pathog 2010, 6:e1000750.
  • [18]Nanduri B, Shack LA, Burgess SC, Lawrence ML: The transcriptional response of Pasteurella multocida to three classes of antibiotics. BMC Genomics 2009, 14(10 Suppl 2):S4.
  • [19]Boyce JD, Wilkie L, Harper M, Paustian ML, Kapur V, Adler B: Genomic scale analysis of Pasteurella multocida gene expression during growth within liver tissue of chickens with fowl cholera. Microbes Infect 2004, 6:290-298.
  • [20]Paustian ML, May BJ, Kapur V: Transcriptional response of Pasteurella multocida to nutrient limitation. J Bacteriol 2002, 184:3734-3739.
  • [21]Nanduri B, Lawrence ML, Peddinti DS, Burgess SC: Effects of subminimum inhibitory concentrations of antibiotics on the Pasteurella multocida proteome: a systems approach. Comp Funct Genomics 2008.
  • [22]E-Komon T, Burchmore R, Herzyk P, Davies R: Predicting the outer membrane proteome of Pasteurella multocida based on consensus prediction enhanced by results integration and manual confirmation. BMC Bioinformatics 2012, 13:63-80. BioMed Central Full Text
  • [23]Harper M, Cox A, St Michael F, Parnas H, Wilkie I, Blackall PJ, Adler B, Boyce JD: Decoration of Pasteurella multocida lipopolysaccharide with phosphocholine is important for virulence. J Bacteriol 2007, 189:7384-7391.
  • [24]St Michael F, Vinogradov E, Li J, Cox AD: Structural analysis of the lipopolysaccharide from Pasteurella multocida genome strain Pm70 and identification of the putative lipopolysaccharide glycosyltransferases. Glycobiology 2005, 15:323-333.
  • [25]Bosch M, Garrido ME, de Rozas AM P, Badiiola I, Barbe J, Llagostera M: Pasteurella multocida contains multiple immunogenic haemin- and haemoglobin-binding proteins. Vet Microbiol 2004, 99:102-112.
  • [26]Hatfaludi T, Al-Hasani K, Gong L, Boyce JD, Ford M, Wilkie IW, Quinsey N, Dunstone MA, Hoke DE, Adler B: Screening of 71 P. multocida proteins for protective efficacy in a fowl cholera infection model and characterization of the protective antigen PlpE. PLoS One 2012, 7:e39973.
  • [27]Ewers C, Becker AL, Bethe A, Kiebling S, Filter M, Wieler LH: Virulence genotype of Pasteurella multocida strains isolated from different hosts with various disease status. Vet Microbiol 2006, 114:304-317.
  • [28]Al-Hasani K, Boyce J, McCarl VP, Bottornley S, Wilkie I, Adler B: Identification of novel immunogens in Pasteurella multocida. Microb Cell Fact 2007, 6:1-5. BioMed Central Full Text
  • [29]Rhoades KR: The microscopic lesions of acute fowl cholera in mature chickens. Avian Dis 1964, 8:658-665.
  • [30]Heddleston KL: Studies on pasteurellosis. V. Two immunogenic types of Pasteurella multocida associated with fowl cholera. Avian Dis 1962, 6:315-321.
  • [31]Boyce JD, Seemann T, Adler B, Harper M: Pathogenomics of Pasteurella multocida. Curr Top Microbiol Immunol 2012, 361:23-38.
  • [32]Boyce JD, Harper M, Wilkie IW, Adler B: Pasteurella. In Pathogenesis of Bacterial Infections in Animals. Chapter 17. 4th edition. Edited by Gyles CL, Prescott JF, Songer JG, Thoen CO. Ames, Iowa: Wiley-Blackwell; 2010.
  • [33]Lee MD, Wooley RE, Brown J, Glisson JR: A survey of potential virulence markers from avian strains of Pasteurella multocida. Vet Microbiol 1991, 26:213-225.
  • [34]Tatum FM, Yersin AG, Briggs RE: Construction and virulence of a Pasteurella multocida fhaB2 mutant in turkeys. Microb Pathog 2005, 39:9-17.
  • [35]Tatum FM, Tabatabai LB, Briggs RE: Cross-protection against fowl cholera disease with the use of recombinant Pasteurella multocida FHAB2 peptides. Avian Dis 2012, 56:589-591.
  • [36]Kumar S, Blaxter ML: Comparing de novo assemblers for 454 transcriptome data. BMC Genomics 2010, 11:571. BioMed Central Full Text
  • [37]Besemer J, Lomsadze A, Borodovsky M: GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. Nucleic Acids Res 2001, 29:2607-2618.
  • [38]Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997, 25:3389-3402.
  • [39]McClure MA, Smith C, Elton P: Parameterization studies for the SAM and HMMER methods of hidden Markov model generation. Proc Int Conf Intell Syst Mol Biol 1996, 4:155-64.
  • [40]Lowe TM, Eddy SR: tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 1997, 25:955-964.
  • [41]Lagesen K, Hallin P, Rodland EA, Staerfeldt HH, Rognes T, Ussery DW: RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 2007, 35:3100-3108.
  • [42]Darling AC, Mau B, Blattner FR, Perna NT: Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res 2004, 14:1394-1403.
  • [43]Darzentas N: Circoletto: visualizing sequence similarity with Circos. Bioinformatics 2010, 26:2620-2621.
  • [44]Cingolani P, Platts A, le Wang L, Coon M, Nguyen T, Wang L, Land SJ, Lu X, Ruden DM: A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin) 2012, 6(2):80-92.
  • [45]Muraoka WT, Zhang Q: Phenotypic and genotypic evidence for L-fucose utilization by Campylobacter jejuni. J Bacteriol 2011, 193:1065-1075.
  • [46]Stahl M, Friis LM, Nothaft H, Liu X, Li J, Szymanski CM, Stintzi A: L-fucose utilization provides Campylobacter jejuni with a competitive advantage. Proc Natl Acad Sci USA 2011, 108:7194-7199.
  • [47]Ahir VB, Roy A, Jhala MK, Bhanderi BB, Mathakiya RA, Bhatt VD, Padiya KB, Jakhesara SJ, Koringa PG, Joshi CG: Genome sequence of Pasteurella multocida subsp. gallicida Anand1_poultry. J Bacteriol 2011, 193:5604.
  • [48]Michael GB, Kadlec K, Sweeney MT, Brzuszkiewicz E, Liesegang H, Daniel R, Murray RW, Watts JL, Schwarz S: ICEPmu1, an integrative conjugative element (ICE) of Pasteurella multocida: structure and transfer. J Antimicrob Chemother 2012, 67:91-100.
  • [49]Liu W, Yang M, Xu Z, Zheng H, Liang W, Zhou R, Wu B, Chen H: Complete genome sequence of Pasteurella multocida HN06, a toxigenic strain of serogroup D. J Bacteriol 2012, 194:3292-3293.
  • [50]Muhairwa AP, Christensen JP, Bisgaard M: Investigations on the carrier rate of Pasteurella multocida in healthy commercial poultry flocks and flocks affected by fowl cholera. Avian Pathol 2000, 29:133-142.
  • [51]Christensen H, Bisgaard M, Bojesen AM, Mutters R, Olsen JE: Genetic relationships among avian isolates classified as Pasteurella haemolytica, Actinobacillus salpingitidis' or Pasteurella anatis with proposal of Gallibacterium anatis gen. nov., comb. nov. and description of additional genomospecies within Gallibacterium gen. nov. Int J Syst Evol Microbiol 2003, 53(Pt 1):275-87.
  • [52]Hatfaludi T, Al-Hasani K, Boyce JD, Adler B: Outer membrane proteins of Pasteurella multocida. Vet Microbiol 2010, 14:1-17.
  • [53]Bosch M, Garrido ME, Llagostera M, Perez De Rozas AM, Badiola I, Barbe J: Characterization of the Pasteurella multocida hgbA gene encoding a hemoglobin-binding protein. Infect Immun 2002, 70:5955-64.
  • [54]Cox AJ, Hunt ML, Boyce JD, Adler B: Functional characterization of HgbB, a new hemoglobin binding protein of Pasteurella multocida. Microb Pathog 2003, 34:287-96.
  • [55]Garcia N, Fernandez-Garayzabal JF, Goyache J, Dominguez L, Vela AI: Associations between biovar and virulence factor genes in Pasteurella multocida isolates from pigs in Spain. Vet Rec 2011, 169:362.
  • [56]Rocha EP, Smith JM, Hurst LD, Holden MT, Cooper JE, Smith NH, Feil EJ: Comparisons of dN/dS are time dependent for closely related bacterial genomes. J Theor Biol 2006, 239:226-35.
  • [57]Gardy JL, Spencer C, Wang K, Ester M, Tusnady GE, Simon I, Hua S, DeFays K, Lambert C, Nakai K: PSORT-B: Improving protein subcellular localization prediction for Gram-negative bacteria. Nucleic Acids Res 2003, 31:3613-7.
  • [58]Harper M, Cox AD, Adler B, Boyce JD: Pasteurella multocida lipopolysaccharide: The long and the short of it. Vet Microbiol 2011, 153:109-15.
  • [59]Harper M, St Michael F, John M, Vinogradov E, Adler B, Boyce JD, Cox AD: Pasteurella multocida Heddleston serovars 1 and 14 express different lipopolysaccharide structures but share the the same lipopolysaccharide biosynthesis outer core locus. Vet Microbiol 2011, 150:289-96.
  • [60]Harper M, St Michael F, Vinogradov E, John M, Boyce JD, Adler B, Cox AD: Characterization of the lipopolysaccharide from Pasteurella multocida Heddleston serovar 9; identification of a proposed bi-functional dTDP-3-acetamido-3,6-dideoxy-a-D-glucose biosynthesis enzyme. Glycobiology 2012, 22:332-44.
  • [61]St Michael F, Harper M, Parnas H, John M, Stupak J, Vinogradov E, Adler B, Boyce JD, Cox AD: Structural and genetic basis for the serological differentiation of Pasteurella multocida Heddleston serotypes 2 and 5. J Bacteriol 2009, 191:6950-59.
  • [62]St Michael F, Li J, Cox AD: Structural analysis of the core oligosaccharide from Pasteurella multocida strain X73 . Carbohydr Res 2005, 340:1253-57.
  • [63]Harper M, St Michael F, Vinogradov E, John M, Steen JA, Van Dorsten L, Boyce JD, Adler B, Cox AD: Structure and biosynthetic locus of the lipopolysaccharide outer core produced by Pasteurella multocida serovars 8 and 13 and the identification of a novel phosphoglycero moity. Glycobiology 2013, 23:286-294.
  文献评价指标  
  下载次数:83次 浏览次数:82次