期刊论文详细信息
BMC Systems Biology
Identification of AMP-activated protein kinase targets by a consensus sequence search of the proteome
John Y-J Shyy2  Shu Chien1  Shankar Subramaniam4  David A Johnson5  Lemar Smith5  Stephanie J King5  Marcy Martin2  Brendan Gongol3  Traci L Marin3 
[1] Department of Bioengineering and Institute of Engineering in Medicine, University of California, San Diego La Jolla 92093, CA, USA;Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla 92093, CA, USA;Department of Cardiopulmonary Sciences and Anatomy, Schools of Allied Health and Medicine, Loma Linda University, Loma Linda 92350, CA, USA;Division of Physiology, Department of Medicine, University of California, San Diego, La Jolla 92093, CA, USA;Divisions of Biochemistry and Molecular Biology and Biomedical Sciences, University of California, Riverside 92521-0121, CA, USA
关键词: Network prediction;    Proteome;    Bioinformatics;    Phosphorylation consensus sequence;    NADSYN1;    FOXO3a;    MMP-2;    ATF2;    AKT2;    AMPK;   
Others  :  1159560
DOI  :  10.1186/s12918-015-0156-0
 received in 2014-08-20, accepted in 2015-02-24,  发布年份 2015
PDF
【 摘 要 】

Background

AMP-activated protein kinase (AMPK) is a heterotrimeric serine/threonine protein kinase that is activated by cellular perturbations associated with ATP depletion or stress. While AMPK modulates the activity of a variety of targets containing a specific phosphorylation consensus sequence, the number of AMPK targets and their influence over cellular processes is currently thought to be limited.

Results

We queried the human and the mouse proteomes for proteins containing AMPK phosphorylation consensus sequences. Integration of this database into Gaggle software facilitated the construction of probable AMPK-regulated networks based on known and predicted molecular associations. In vitro kinase assays were conducted for preliminary validation of 12 novel AMPK targets across a variety of cellular functional categories, including transcription, translation, cell migration, protein transport, and energy homeostasis. Following initial validation, pathways that include NAD synthetase 1 (NADSYN1) and protein kinase B (AKT2) were hypothesized and experimentally tested to provide a mechanistic basis for AMPK regulation of cell migration and maintenance of cellular NAD+ concentrations during catabolic processes.

Conclusions

This study delineates an approach that encompasses both in silico procedures and in vitro experiments to produce testable hypotheses for AMPK regulation of cellular processes.

【 授权许可】

   
2015 Marin et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150409020448585.pdf 1928KB PDF download
Figure 6. 70KB Image download
Figure 5. 61KB Image download
Figure 4. 26KB Image download
Figure 3. 41KB Image download
Figure 2. 28KB Image download
Figure 1. 112KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Kahn BB, Alquier T, Carling D, Hardie DG: AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab 2005, 1:15-25.
  • [2]Hardie DG, Ross FA, Hawley SA: AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell Biol 2012, 13:251-62.
  • [3]Woods A, Dickerson K, Heath R, Hong SP, Momcilovic M, Johnstone SR, et al.: Ca2+/calmodulin-dependent protein kinase kinase-beta acts upstream of AMP-activated protein kinase in mammalian cells. Cell Metab 2005, 2:21-33.
  • [4]Sanz P1, Rubio T, Garcia-Gimeno MA: AMPK beta subunits: more than just a scaffold in the formation of AMPK complex. FEBS J 2013, 280:3723-33.
  • [5]Towler MC, Hardie DG: AMP-Activated Protein Kinase in Metabolic Control and Insulin Signaling. Circ Res 2007, 100:328-41.
  • [6]Leff T: AMP-activated protein kinase regulates gene expression by direct phosphorylation of nuclear proteins. Biochem Soc Trans 2003, 31:224-7.
  • [7]Xu Q, Yang C, Du Y, Chen Y, Liu H, Deng M, et al.: AMPK regulates histone H2B O-GlcNAcylation. Nucleic Acids Res 2014, 42:5594-604.
  • [8]Shannon PT, Reiss DJ, Bonneau R, Baliga NS: The Gaggle: an open-source software system for integrating bioinformatics software and data sources. BMC Bioinformatics 2006, 7:176. BioMed Central Full Text
  • [9]Cantó C, Gerhart-Hines Z, Feige JN, Lagouge M, Noriega L, Milne JC, et al.: AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature 2009, 458(7241):1056-60.
  • [10]LaRonde-LeBlanc N, Resto M, Gerratana B: Regulation of active site coupling in glutamine-dependent NAD (+) synthetase. Nat Struct Mol Biol 2009, 16(4):421-9.
  • [11]Greer EL, Oskoui PR, Banko MR, Maniar JM, Gygi MP, Gygi SP, et al.: The energy sensor AMP-activated protein kinase directly regulates the mammalian FOXO3 transcription factor. J Biol Chem 2007, 282(41):30107-19.
  • [12]Nagata D, Mogi M, Walsh K: AMP-activated protein kinase (AMPK) signaling in endothelial cells is essential for angiogenesis in response to hypoxic stress. J Biol Chem 2003, 278(33):31000-6.
  • [13]Liu Y, Tang G, Zhang Z, Wang Y, Yang GY: Metformin promotes focal angiogenesis and neurogenesis in mice following middle cerebral artery occlusion. Neurosci Lett 2014, 579C:46-51.
  • [14]Zhu F, Zhang Y, Bode AM, Dong Z: Involvement of ERKs and mitogen- and stress-activated protein kinase in UVC-induced phosphorylation of ATF2 in JB6cells. Carcinogenesis 2004, 25(10):1847-52.
  • [15]Fan Y, Gong Y, Ghosh PK, Graham LM, Fox PL: Spatial coordination of actin polymerization and ILK-Akt2 activity during endothelial cell migration. Dev Cell 2009, 16(5):661-74.
  • [16]Song H, Ki SH, Kim SG, Moon A: Activating transcription factor 2 mediates matrix metalloproteinase-2 transcriptional activation induced by p38 in breast epithelial cells. Cancer Res 2006, 66(21):10487-96.
  • [17]Ben-Yosef Y, Miller A, Shapiro S, Lahat N: Hypoxia of endothelial cells leads to MMP-2-dependent survival and death. Am J Physiol Cell Physiol 2005, 289(5):C1321-31.
  • [18]Shenoy SK, Drake MT, Nelson CD, Houtz DA, Xiao K, Madabushi S, et al.: Beta-arrestin-dependent, G protein-independent ERK1/2 activation by the beta2 adrenergic receptor. J Biol Chem 2006, 281(2):1261-73.
  • [19]Witherow DS, Garrison TR, Miller WE, Lefkowitz RJ: Beta-arrestin inhibits NF-kappaB activity by means of its interaction with the NF-kappaB inhibitor IkappaBalpha. Proc Natl Acad Sci U S A 2004, 101(23):8603-7.
  • [20]Kang J, Shi Y, Xiang B, Qu B, Su W, Zhu M, et al.: A nuclear function of beta-arrestin1 in GPCR signaling: regulation of histone acetylation and gene transcription. Cell 2005, 123(5):833-47.
  • [21]DeWire SM, Ahn S, Lefkowitz RJ, Shenoy SK: Beta-arrestins and cell signaling. Annu Rev Physiol 2007, 69:483-510.
  • [22]Yu MC, Su LL, Zou L, Liu Y, Wu N, Kong L, et al.: An essential function for beta-arrestin 2 in the inhibitory signaling of natural killer cells. Nat Immunol 2008, 9(8):898-907.
  • [23]Zirwes RF, Eilbracht J, Kneissel S, Schmidt-Zachmann MS: A novel helicase-type protein in the nucleolus: protein NOH61. Mol Biol Cell 2000, 11(4):1153-67.
  • [24]Avni D, Biberman Y, Meyuhas O: The 5’ terminal oligopyrimidine tract confers translational control on TOP mRNAs in a cell type- and sequence context-dependent manner. Nucleic Acids Res 1997, 25(5):995-1001.
  • [25]Reiter AK, Bolster DR, Crozier SJ, Kimball SR, Jefferson LS: AMPK represses TOP mRNA translation but not global protein synthesis in liver. Biochem Biophys Res Commun 2008, 374(2):345-50.
  • [26]Hebert DN, Molinari M: In and out of the ER: protein folding, quality control, degradation, and related human diseases. Physiol Rev 2007, 87:1377-408.
  • [27]Coe H, Bedard K, Groenendyk J, Jung J, Michalak M: Endoplasmic reticulum stress in the absence of calnexin. Cell Stress and Chaperones 2008, 13(4):497-507.
  • [28]Zhang K, Kaufman RJ: Signaling the unfolded protein response from the endoplasmic reticulum. J Biol Chem 2004, 279(25):25935-8.
  • [29]Roderick HL, Lechleiter JD, Camacho P: Cytosolic phosphorylation of calnexin controls intracellular Ca (2+) oscillations via an interaction with SERCA2b. J Cell Biol 2000, 149(6):1235-48.
  • [30]Cardozo AK, Ortis F, Storling J, Feng YM, Rasschaert J, Tonnesen M, et al.: Cytokines downregulate the sarcoendoplasmic reticulum pump Ca2+ ATPase 2b and deplete endoplasmic reticulum Ca2+, leading to induction of endoplasmic reticulum stress in pancreatic beta-cells. Diabetes 2005, 54:452-61.
  • [31]Dong Y, Zhang M, Liang B, Xie Z, Zhao Z, Asfa S, et al.: Reduction of AMP-activated protein kinase alpha2 increases endoplasmic reticulum stress and atherosclerosis in vivo. Circ Res 2010, 121(6):792-803.
  • [32]Foti D, Iuliano R, Chiefari E, Brunettii A: A nucleoprotein complex containing Sp1, C/EBPb, and HMGI-Y controls human insulin receptor gene transcription. Mol Cell Biol 2003, 23:2720-32.
  • [33]Ha TK, Chi SG: CAV1/caveolin 1 enhances aerobic glycolysis in colon cancer cells via activation of SLC2A3/GLUT3 transcription. Autophagy 2012, 8(11):1684-5.
  • [34]Salani B, Maffioli S, Hamoudane M, Parodi A, Ravera S, Passalacqua M, et al.: Caveolin-1 is essential for metformin inhibitory effect on IGF1 action in non-small-cell lung cancer cells. FASEB J 2012, 26(2):788-98.
  • [35]Anderson KP, Kern CB, Crable SC, Lingrel JB: Isolation of a gene encoding a functional zinc finger protein homologous to erythroid Krüppel-like factor: identification of a new multigene family. Mol Cell Biol 1995, 15(11):5957-65.
  • [36]Evans PM, Zhang W, Chen X, Yang J, Bhakat KK, Liu C: Kruppel-like factor 4 is acetylated by p300 and regulates gene transcription via modulation of histoneacetylation. J Biol Chem 2007, 282(47):33994-4002.
  • [37]Li D, Yea S, Dolios G, Martignetti JA, Narla G, Wang R, et al.: Regulation of Kruppel-like factor 6 tumor suppressor activity by acetylation. Cancer Res 2005, 65(20):9216-25.
  • [38]Kuo CT, Veselits ML, Barton KP, Lu MM, Clendenin C, Leiden JM: The KLF transcription factor is required for normal tunica media formation and blood vessel stabilization during murine embryogenesis. Genes Dev 1997, 11(22):2996-3006.
  • [39]Wu J, Bohanan CS, Neumann JC, Lingrel JB: KLF2 transcription factor modulates blood vessel maturation through smooth muscle cell migration. J Biol Chem 2008, 283(7):3942-50.
  • [40]Sumida H, Noguchi K, Kihara Y, Abe M, Yanagida K, Hamano F, et al.: LPA4 regulates blood and lymphatic vessel formation during mouse embryogenesis. Blood 2010, 116(23):5060-70.
  • [41]Young A, Wu W, Sun W, Benjamin Larman H, Wang N, Li YS, et al.: Flow activation of AMP-activated protein kinase in vascular endothelium leads to Krüppel-like factor 2 expression. Arterioscler Thromb Vasc Biol 2009, 29(11):1902-8.
  • [42]Valdez BC, Henning D, So RB, Dixon J, Dixon MJ: The Treacher Collins syndrome (TCOF1) gene product is involved in ribosomal DNA gene transcription by interacting with upstream binding factor. Proc Natl Acad Sci U S A 2004, 101(29):10709-14.
  • [43]Poortinga G, Hannan KM, Snelling H, Walkley CR, Jenkins A, Sharkey K, et al.: MAD1 and cMYC regulate UBF and rDNA transcription during granulocyte differentiation. EBMO J 2004, 23(16):3325-35.
  • [44]Dixon J, Jones NC, Sandell LL, Jayasinghe SM, Crane J, Rey JP, et al.: Tcof1/Treacle is required for neural crest cell formation and proliferation deficiencies that cause craniofacial abnormalities. Proc Natl Acad Sci U S A 2006, 103(36):13403-8.
  • [45]Viollet B, Athea Y, Mounier R, Guigas B, Zarrinpashneh E, Horman S, et al.: AMPK: Lessons from transgenic and knockout animals. Front Biosci 2009, 14:19-44.
  • [46]Howard TL, Stauffer DR, Degnin CR, Hollenberg SM: CHMP1 functions as a member of a newly defined family of vesicle trafficking proteins. J Cell Sci 2001, 114(Pt 13):2395-404.
  • [47]Stauffer DR, Howard TL, Nyun T, Hollenberg SM: CHMP1 is a novel nuclear matrix protein affecting chromatin structure and cell-cycle progression. J Cell Sci 2001, 114(Pt 13):2383-93.
  • [48]Cheung P, Tanner KG, Cheung WL, Sassone-Corsi P, Denu JM, Allis CD: Synergistic coupling of histone H3 phosphorylation and acetylation in response to epidermal growth factor stimulation. Mol Cell 2000, 5(6):905-15.
  • [49]Chan S, Choi EA, Shi Y: Pre-mRNA 3’-end processing complex assembly and function. Wiley Interdiscip Rev RNA 2011, 2(3):321-35.
  • [50]Drosos Y, Kouloukoussa M, Østvold AC, Grundt K, Goutas N, Vlachodimitropoulos D, et al.: NUCKS overexpression in breast cancer. Cancer Cell Int 2009, 9:19. BioMed Central Full Text
  • [51]Grundt K, Skjeldal L, Anthonsen HW, Skauge T, Huitfeldt HS, Østvold AC: A putative DNA-binding domain in the NUCKS protein. Arch Biochem Biophys 2002, 407(2):168-75.
  • [52]Price JL, Blau J, Rothenfluh A, Abodeely M, Kloss B, Young MW: Double-time is a novel Drosophila clock gene that regulates PERIOD protein accumulation. Cell 1998, 94(1):83-95.
  • [53]Um JH, Pendergast JS, Springer DA, Foretz M, Viollet B, Brown A, et al.: AMPK regulates circadian rhythms in a tissue- and isoform-specific manner. PLoS One 2011, 6(3):e18450.
  • [54]Richly H, Rocha-Viegas L, Ribeiro JD, Demajo S, Gundem G, Lopez-Bigas N, et al.: Transcriptional activation of polycomb-repressed genes by ZRF1. Nature 2010, 468(7327):1124-8.
  • [55]Otto H, Conz C, Maier P, Wölfle T, Suzuki CK, Jenö P, et al.: The chaperones MPP11 and Hsp70L1 form the mammalian ribosome-associated complex. Proc Natl Acad Sci U S A 2005, 102(29):10064-9.
  • [56]Hundley HA, Walter W, Bairstow S, Craig EA: Human Mpp11 J protein: ribosome- tethered molecular chaperones are ubiquitous. Science 2005, 308(5724):1032-4.
  • [57]Johnson LN: Structural basis for substrate recognition and control in protein kinases. Ernst Schering Res Found Workshop 2001, 34:47-69.
  • [58]Xu J: Preparation, culture, and immortalization of mouse embryonic fibroblasts. Curr Protoc Mol Biol 2005, Chapter 28(Unit 28):1.
  文献评价指标  
  下载次数:43次 浏览次数:3次