期刊论文详细信息
BMC Genomics
Genomic landscape of rat strain and substrain variation
Edwin Cuppen5  Victor Guryev2  Boris Tabakoff4  Marieke Simonis5  Norbert Hübner1  Tim Aitman3  Robin H van der Weide5  Ruben van Boxtel5  Stephen Flink4  Sander Boymans5  Eleonora Adami1  Sebastian Schäfer1  Francis Blokzijl5  Wim Spee5  Joep de Ligt5  Roel Hermsen5 
[1] Max Delbrück Center for Molecular Medicine, Berlin, Germany;European Research Institute for the Biology of Ageing, University of Groningen, University Medical Centre Groningen, Antonius Deusinglaan 1, Groningen, 9713 AD, The Netherlands;Physiological Genomic and Medicine Group, MRC Clinical Sciences Centre, London, UK;Department of Pharmacology, University of Colorado School of Medicine, 12800 E. 19th Ave., Aurora, CO, USA;Hubrecht Institute, KNAW and University Medical Center Utrecht, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
关键词: rnor5.0;    rn5;    RGSC5.0;    Genomic variation;    Substrain;    Inbred strain;    Rat;   
Others  :  1204046
DOI  :  10.1186/s12864-015-1594-1
 received in 2014-09-18, accepted in 2015-04-28,  发布年份 2015
PDF
【 摘 要 】

Background

Since the completion of the rat reference genome in 2003, whole-genome sequencing data from more than 40 rat strains have become available. These data represent the broad range of strains that are used in rat research including commonly used substrains. Currently, this wealth of information cannot be used to its full extent, because the variety of different variant calling algorithms employed by different groups impairs comparison between strains. In addition, all rat whole genome sequencing studies to date used an outdated reference genome for analysis (RGSC3.4 released in 2004).

Results

Here we present a comprehensive, multi-sample and uniformly called set of genetic variants in 40 rat strains, including 19 substrains. We reanalyzed all primary data using a recent version of the rat reference assembly (RGSC5.0 released in 2012) and identified over 12 million genomic variants (SNVs, indels and structural variants) among the 40 strains. 28,318 SNVs are specific to individual substrains, which may be explained by introgression from other unsequenced strains and ongoing evolution by genetic drift. Substrain SNVs may have a larger predicted functional impact compared to older shared SNVs.

Conclusions

In summary we present a comprehensive catalog of uniformly analyzed genetic variants among 40 widely used rat inbred strains based on the RGSC5.0 assembly. This represents a valuable resource, which will facilitate rat functional genomic research. In line with previous observations, our genome-wide analyses do not show evidence for contribution of multiple ancestral founder rat subspecies to the currently used rat inbred strains, as is the case for mouse. In addition, we find that the degree of substrain variation is highly variable between strains, which is of importance for the correct interpretation of experimental data from different labs.

【 授权许可】

   
2015 Hermsen et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150523043300405.pdf 3692KB PDF download
Figure 5. 40KB Image download
Figure 4. 114KB Image download
Figure 3. 73KB Image download
Figure 2. 112KB Image download
Figure 1. 28KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Jacob HJ. Functional genomics and rat models. Genome Res. 1999; 9(11):1013-6.
  • [2]Bosse JD, Lin HY, Sloan C, Zhang QJ, Abel ED, Pereira TJ et al.. A low-carbohydrate/high-fat diet reduces blood pressure in spontaneously hypertensive rats without deleterious changes in insulin resistance. Am J Physiol Heart Circ Physiol. 2013; 304(12):H1733-42.
  • [3]Diness JG, Skibsbye L, Jespersen T, Bartels ED, Sorensen US, Hansen RS et al.. Effects on atrial fibrillation in aged hypertensive rats by Ca(2+)-activated K(+) channel inhibition. Hypertension. 2011; 57(6):1129-35.
  • [4]Sagvolden T, Dasbanerjee T, Zhang-James Y, Middleton F, Faraone S. Behavioral and genetic evidence for a novel animal model of Attention-Deficit/Hyperactivity Disorder Predominantly Inattentive Subtype. Behav Brain Funct. 2008; 4:56. BioMed Central Full Text
  • [5]Saar K, Beck A, Bihoreau MT, Birney E, Brocklebank D, Chen Y et al.. SNP and haplotype mapping for genetic analysis in the rat. Nat Genet. 2008; 40(5):560-6.
  • [6]Smits BM, Guryev V, Zeegers D, Wedekind D, Hedrich HJ, Cuppen E. Efficient single nucleotide polymorphism discovery in laboratory rat strains using wild rat-derived SNP candidates. BMC Genomics. 2005; 6:170. BioMed Central Full Text
  • [7]Atanur SS, Birol I, Guryev V, Hirst M, Hummel O, Morrissey C et al.. The genome sequence of the spontaneously hypertensive rat: Analysis and functional significance. Genome Res. 2010; 20(6):791-803.
  • [8]Simonis M, Atanur SS, Linsen S, Guryev V, Ruzius FP, Game L et al.. Genetic basis of transcriptome differences between the founder strains of the rat HXB/BXH recombinant inbred panel. Genome Biol. 2012; 13(4):r31. BioMed Central Full Text
  • [9]Baud A, Hermsen R, Guryev V, Stridh P, Graham D, McBride MW et al.. Combined sequence-based and genetic mapping analysis of complex traits in outbred rats. Nat Genet. 2013; 45(7):767-75.
  • [10]Guo X, Brenner M, Zhang X, Laragione T, Tai S, Li Y et al.. Whole-genome sequences of DA and F344 rats with different susceptibilities to arthritis, autoimmunity, inflammation and cancer. Genetics. 2013; 194(4):1017-28.
  • [11]Atanur SS, Diaz AG, Maratou K, Sarkis A, Rotival M, Game L et al.. Genome sequencing reveals loci under artificial selection that underlie disease phenotypes in the laboratory rat. Cell. 2013; 154(3):691-703.
  • [12]Ma MC, Atanur SS, Aitman TJ, Kwitek AE. Genomic structure of nucleotide diversity among Lyon rat models of metabolic syndrome. BMC Genomics. 2014; 15:197. BioMed Central Full Text
  • [13]Gibbs RA, Weinstock GM, Metzker ML, Muzny DM, Sodergren EJ, Scherer S et al.. Genome sequence of the Brown Norway rat yields insights into mammalian evolution. Nature. 2004; 428(6982):493-521.
  • [14]van Heesch S, Kloosterman WP, Lansu N, Ruzius FP, Levandowsky E, Lee CC et al.. Improving mammalian genome scaffolding using large insert mate-pair next-generation sequencing. BMC Genomics. 2013; 14:257. BioMed Central Full Text
  • [15]The Rat Genome Project.https://www.hgsc.bcm.edu/other-mammals/rat-genome-project.
  • [16]McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A et al.. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010; 20(9):1297-303.
  • [17]Cingolani P, Platts A, le Wang L, Coon M, Nguyen T, Wang L et al.. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly. 2012; 6(2):80-92.
  • [18]Cao J, Schneeberger K, Ossowski S, Gunther T, Bender S, Fitz J et al.. Whole-genome sequencing of multiple Arabidopsis thaliana populations. Nat Genet. 2011; 43(10):956-63.
  • [19]Mi H, Muruganujan A, Casagrande JT, Thomas PD. Large-scale gene function analysis with the PANTHER classification system. Nat Protoc. 2013; 8(8):1551-66.
  • [20]Axelsson E, Ratnakumar A, Arendt ML, Maqbool K, Webster MT, Perloski M et al.. The genomic signature of dog domestication reveals adaptation to a starch-rich diet. Nature. 2013; 495(7441):360-4.
  • [21]Niimura Y. Evolutionary dynamics of olfactory receptor genes in chordates: interaction between environments and genomic contents. Hum Genomics. 2009; 4(2):107-18. BioMed Central Full Text
  • [22]Hardison RC. Evolution of hemoglobin and its genes. Cold Spring Harb Perspect Med. 2012; 2(12):a011627.
  • [23]Higashino A, Sakate R, Kameoka Y, Takahashi I, Hirata M, Tanuma R et al.. Whole-genome sequencing and analysis of the Malaysian cynomolgus macaque (Macaca fascicularis) genome. Genome Biol. 2012; 13(7):R58. BioMed Central Full Text
  • [24]Raj A, Stephens M, Pritchard JK. fastSTRUCTURE: Variational Inference of Population Structure in Large SNP Data Sets. Genetics. 2014; 197(2):573-89.
  • [25]Kurtz TW, Montano M, Chan L, Kabra P. Molecular evidence of genetic heterogeneity in Wistar-Kyoto rats: implications for research with the spontaneously hypertensive rat. Hypertension. 1989; 13(2):188-92.
  • [26]Rausch T, Zichner T, Schlattl A, Stutz AM, Benes V, Korbel JO. DELLY: structural variant discovery by integrated paired-end and split-read analysis. Bioinformatics. 2012; 28(18):i333-9.
  • [27]Abyzov A, Urban AE, Snyder M, Gerstein M. CNVnator: an approach to discover, genotype, and characterize typical and atypical CNVs from family and population genome sequencing. Genome Res. 2011; 21(6):974-84.
  • [28]Kren V. Genetics of the polydactyly-luxate syndrome in the Norway rat, Rattus norvegicus. Acta Univ Carol Med Monogr. 1975; 68:1-103.
  • [29]Wotjak CT. C57BLack/BOX? The importance of exact mouse strain nomenclature. Trends Genet. 2003; 19(4):183-4.
  • [30]Denver DR, Dolan PC, Wilhelm LJ, Sung W, Lucas-Lledo JI, Howe DK et al.. A genome-wide view of Caenorhabditis elegans base-substitution mutation processes. Proc Natl Acad Sci U S A. 2009; 106(38):16310-4.
  • [31]Tomita-Mitchell A, Kat AG, Marcelino LA, Li-Sucholeiki XC, Goodluck-Griffith J, Thilly WG. Mismatch repair deficient human cells: spontaneous and MNNG-induced mutational spectra in the HPRT gene. Mutat Res. 2000; 450(1–2):125-38.
  • [32]Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SA, Behjati S, Biankin AV et al.. Signatures of mutational processes in human cancer. Nature. 2013; 500(7463):415-21.
  • [33]Evans MDGH, Lunec J. Reactive oxygen species and their cytotoxic mechanisms. Adv Mol Cell Biol. 1997; 20:25-73.
  • [34]Siepel A, Bejerano G, Pedersen JS, Hinrichs AS, Hou M, Rosenbloom K et al.. Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res. 2005; 15(8):1034-50.
  • [35]Lopez B, Ryan RP, Moreno C, Sarkis A, Lazar J, Provoost AP et al.. Identification of a QTL on chromosome 1 for impaired autoregulation of RBF in fawn-hooded hypertensive rats. Am J Physiol Renal Physiol. 2006; 290(5):F1213-21.
  • [36]Rapp JP, Garrett MR, Dene H, Meng H, Hoebee B, Lathrop GM. Linkage analysis and construction of a congenic strain for a blood pressure QTL on rat chromosome 9. Genomics. 1998; 51(2):191-6.
  • [37]Vanderlinden LA, Saba LM, Printz MP, Flodman P, Koob G, Richardson HN et al.. Is the Alcohol Deprivation Effect Genetically Mediated? Studies with HXB/BXH Recombinant Inbred Rat Strains. Alcohol Clin Exp Res. 2014; 38(7):2148-57.
  • [38]Yagil Y, Hessner M, Schulz H, Gosele C, Lebedev L, Barkalifa R et al.. Geno-transcriptomic dissection of proteinuria in the uninephrectomized rat uncovers a molecular complexity with sexual dimorphism. Physiol Genomics. 2010; 42A(4):301-16.
  • [39]Zagato L, Modica R, Florio M, Torielli L, Bihoreau MT, Bianchi G et al.. Genetic mapping of blood pressure quantitative trait loci in Milan hypertensive rats. Hypertension. 2000; 36(5):734-9.
  • [40]Yang H, Wang JR, Didion JP, Buus RJ, Bell TA, Welsh CE et al.. Subspecific origin and haplotype diversity in the laboratory mouse. Nat Genet. 2011; 43(7):648-55.
  • [41]Laulederkind SJ, Hayman GT, Wang SJ, Smith JR, Lowry TF, Nigam R et al.. The Rat Genome Database 2013–data, tools and users. Brief Bioinform. 2013; 14(4):520-6.
  • [42]Bennett B, Saba LM, Hornbaker CK, Kechris KJ, Hoffman P, Tabakoff B. Genetical genomic analysis of complex phenotypes using the PhenoGen website. Behav Genet. 2011; 41(4):625-8.
  • [43]Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009; 25(14):1754-60.
  • [44]Trapnell C, Pachter L, Salzberg SL. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics. 2009; 25(9):1105-11.
  • [45]Flicek P, Amode MR, Barrell D, Beal K, Billis K, Brent S et al.. Ensembl 2014. Nucleic Acids Res. 2014; 42(Database issue):D749-55.
  文献评价指标  
  下载次数:46次 浏览次数:6次