| BMC Microbiology | |
| Cross-feeding by Bifidobacterium breve UCC2003 during co-cultivation with Bifidobacterium bifidum PRL2010 in a mucin-based medium | |
| Douwe van Sinderen1  Marco Ventura3  Lokesh Joshi4  Marian Kane4  Michelle Kilcoyne2  Mary O’Connell Motherway1  Muireann Egan1  | |
| [1] School of Microbiology and Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland;Microbiology, School of Natural Sciences, National University of Ireland, Galway, Ireland;Laboratory of Probiogenomics, Department of Life Sciences, University of Parma, Parma, Italy;Glycoscience Group, National Centre for Biomedical Engineering Science, National University of Ireland, Galway, Ireland | |
| 关键词: Galactose; Sialic acid; Fucose; Probiotic; Bifidobacteria; | |
| Others : 1137727 DOI : 10.1186/s12866-014-0282-7 |
|
| received in 2014-08-08, accepted in 2014-11-03, 发布年份 2014 | |
PDF
|
|
【 摘 要 】
Background
Bifidobacteria constitute a specific group of commensal bacteria that commonly inhabit the mammalian gastrointestinal tract. Bifidobacterium breve UCC2003 was previously shown to utilize a variety of plant/diet/host-derived carbohydrates, including cellodextrin, starch and galactan, as well as the mucin and HMO-derived monosaccharide, sialic acid. In the current study, we investigated the ability of this strain to utilize parts of a host-derived source of carbohydrate, namely the mucin glycoprotein, when grown in co-culture with the mucin-degrading Bifidobacterium bifidum PRL2010.
Results
B. breve UCC2003 was shown to exhibit growth properties in a mucin-based medium, but only when grown in the presence of B. bifidum PRL2010, which is known to metabolize mucin. A combination of HPAEC-PAD and transcriptome analyses identified some of the possible monosaccharides and oligosaccharides which support this enhanced co-cultivation growth/viability phenotype.
Conclusion
This study describes the potential existence of a gut commensal relationship between two bifidobacterial species. We demonstrate the in vitro ability of B. breve UCC2003 to cross-feed on sugars released by the mucin-degrading activity of B. bifidum PRL2010, thus advancing our knowledge on the metabolic adaptability which allows the former strain to colonize the (infant) gut by its extensive metabolic abilities to (co-)utilize available carbohydrate sources.
【 授权许可】
2014 Egan et al.; licensee BioMed Central Ltd.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 20150317164442546.pdf | 1198KB | ||
| Figure 4. | 21KB | Image | |
| Figure 3. | 38KB | Image | |
| Figure 2. | 65KB | Image | |
| Figure 1. | 22KB | Image |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
【 参考文献 】
- [1]Ventura M, Canchaya C, Fitzgerald G, Gupta R, van Sinderen D: Genomics as a means to understand bacterial phylogeny and ecological adaptation: the case of bifidobacteria. Antonie van Leeuwenhoek 2007, 92(2):265-265.
- [2]Round JL, Mazmanian SK: The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol 2009, 9(5):313-323.
- [3]LeBlanc JG, Milani C, de Giori GS, Sesma F, van Sinderen D, Ventura M: Bacteria as vitamin suppliers to their host: a gut microbiota perspective. Curr Opin Biotechnol 2013, 24(2):160-168.
- [4]Servin AL: Antagonistic activities of lactobacilli and bifidobacteria against microbial pathogens. FEMS Microbiol Rev 2004, 28(4):405-440.
- [5]Turroni F, Peano C, Pass DA, Foroni E, Severgnini M, Claesson MJ, Kerr C, Hourihane J, Murray D, Fuligni F, Gueimonde M, Margolles A, De Bellis G, O’Toole PW, van Sinderen D, Marchesi JR, Ventura M: Diversity of bifidobacteria within the infant gut microbiota. PLoS ONE 2012, 7(5):e36957.
- [6]Pokusaeva K, Fitzgerald G, van Sinderen D: Carbohydrate metabolism in bifidobacteria. Genes Nutr 2011, 6(3):285-306.
- [7]O’Connell Motherway M, Fitzgerald GF, van Sinderen D: Metabolism of a plant derived galactose-containing polysaccharide by Bifidobacterium breve UCC2003. Microb Biotechnol 2011, 4(3):403-416.
- [8]Pokusaeva K, O’Connell-Motherway M, Zomer A, MacSharry J, Fitzgerald GF, van Sinderen D: Cellodextrin utilization by Bifidobacterium breve UCC2003. Appl Environ Microbiol 2011, 77(5):1681-1690.
- [9]O’Connell Motherway M, Kinsella M, Fitzgerald GF, van Sinderen D: Transcriptional and functional characterization of genetic elements involved in galacto-oligosaccharide utilization by Bifidobacterium breve UCC2003. Microb Biotechnol 2013, 6(1):67-79.
- [10]O’Connell KJ, O’Connell Motherway M, O’Callaghan J, Fitzgerald GF, Ross RP, Ventura M, Stanton C, van Sinderen D: Metabolism of four α-glycosidic linkage-containing oligosaccharides by Bifidobacterium breve UCC2003. Appl Environ Microbiol 2013, 79(20):6280-6292.
- [11]O’Connell Motherway M, Fitzgerald G, Neirynck S, Ryan S, Steidler L, van Sinderen D: Characterization of ApuB, an extracellular type II amylopullulanase from Bifidobacterium breve UCC2003. Appl Environ Microbiol 2008, 74(20):6271-6279.
- [12]Ryan S, Fitzgerald G, van Sinderen D: Screening for and identification of starch-, amylopectin-, and pullulan-degrading activities in bifidobacterial Strains. Appl Environ Microbiol 2006, 72(8):5289-5296.
- [13]Egan M, O’Connell Motherway M, Ventura M, van Sinderen D: Metabolism of sialic acid by Bifidobacterium breve UCC2003. Appl Environ Microbiol 2014, 80(14):4414-4426.
- [14]Podolsky DK: Oligosaccharide structures of human colonic mucin. J Biol Chem 1985, 260(14):8262-8271.
- [15]Larsson JM, Karlsson H, Sjovall H, Hansson GC: A complex, but uniform O-glycosylation of the human MUC2 mucin from colonic biopsies analyzed by nanoLC/MSn. Glycobiology 2009, 19(7):756-766.
- [16]Tytgat KM, Buller HA, Opdam FJ, Kim YS, Einerhand AW, Dekker J: Biosynthesis of human colonic mucin: Muc2 is the prominent secretory mucin. Gastroenterol 1994, 107(5):1352-1363.
- [17]Capon C, Maes E, Michalski J, Leffler H, Kim YS: Sd(a)-antigen-like structures carried on core 3 are prominent features of glycans from the mucin of normal human descending colon. Biochem J 2001, 358(3):657-664.
- [18]Robbe C, Capon C, Coddeville B, Michalski J: Structural diversity and specific distribution of O-glycans in normal human mucins along the intestinal tract. Biochem J 2004, 384:307-316.
- [19]Hoskins LC, Boulding ET: Mucin degradation in human colon ecosystems. Evidence for the existence and role of bacterial subpopulations producing glycosidases as extracellular enzymes. J Clin Invest 1981, 67(1):163-172.
- [20]Derrien M, Vaughan EE, Plugge CM, de Vos WM: Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium. Int J Syst Evol Micr 2004, 54(5):1469-1476.
- [21]Corfield AP, Wagner SA, Clamp J, Kriaris M, Hoskins L: Mucin degradation in the human colon: production of sialidase, sialate O-acetylesterase, N-acetylneuraminate lyase, arylesterase, and glycosulfatase activities by strains of fecal bacteria. Infect Immun 1992, 60(10):3971-3978.
- [22]Hoskins LC, Agustines M, McKee WB, Boulding ET, Kriaris M, Niedermeyer G: Mucin degradation in human colon ecosystems. Isolation and properties of fecal strains that degrade ABH blood group antigens and oligosaccharides from mucin glycoproteins. J Clin Invest 1985, 75(3):944-953.
- [23]Ashida H, Miyake A, Kiyohara M, Wada J, Yoshida E, Kumagai H, Katayama T, Yamamoto K: Two distinct α-l-fucosidases from Bifidobacterium bifidum are essential for the utilization of fucosylated milk oligosaccharides and glycoconjugates. Glycobiology 2009, 19(9):1010-1017.
- [24]Katayama T, Sakuma A, Kimura T, Makimura Y, Hiratake J, Sakata K, Yamanoi T, Kumagai H, Yamamoto K: Molecular cloning and characterization of Bifidobacterium bifidum 1,2-α-L-fucosidase (AfcA), a novel inverting glycosidase (Glycoside Hydrolase family 95). J Bacteriol 2004, 186(15):4885-4893.
- [25]Fujita K, Oura F, Nagamine N, Katayama T, Hiratake J, Sakata K, Kumagai H, Yamamoto K: Identification and molecular cloning of a novel glycoside hydrolase family of core 1 type O-glycan-specific endo-α-N-acetylgalactosaminidase from Bifidobacterium longum. J Biol Chem 2005, 280(45):37415-37422.
- [26]Turroni F, Bottacini F, Foroni E, Mulder I, Kim J-H, Zomer A, Sanchez B, Bidossi A, Ferrarini A, Giubellini V, Delledonne M, Henrissat B, Coutinho P, Oggioni M, Fitzgerald G, Mills D, Margolles A, Kelly D, van Sinderen D, Ventura M: Genome analysis of Bifidobacterium bifidum PRL2010 reveals metabolic pathways for host-derived glycan foraging. Proc Natl Acad Sci U S A 2010, 107(45):19514-19519.
- [27]Turroni F, Milani C, van Sinderen D, Ventura M: Genetic strategies for mucin metabolism in Bifidobacterium bifidum PRL2010. Aging 2010, 107:19514-19519.
- [28]Ward R, Niñonuevo M, Mills D, Lebrilla C, German B: In vitro fermentability of human milk oligosaccharides by several strains of bifidobacteria. Mol Nutr Food Res 2007, 51(11):1398-1405.
- [29]Asakuma S, Hatakeyama E, Urashima T, Yoshida E, Katayama T, Yamamoto K, Kumagai H, Ashida H, Hirose J, Kitaoka M: Physiology of consumption of human milk oligosaccharides by infant gut-associated bifidobacteria. J Biol Chem 2011, 286(40):34583-34592.
- [30]De Man JC, Rogosa M, Sharpe ME: A medium for the cultivation of lactobacilli. J Appl Bacteriol 1960, 23(1):130-135.
- [31]Sambrook J, Fritsch EF, Maniatis T: Molecular Cloning A Laboratory Manual. 2nd edition. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY; 1989.
- [32]Rutherford K, Parkhill J, Crook J, Horsnell T, Rice P, Rajandream M-A, Barrell B: Artemis: sequence visualization and annotation. Bioinformatics 2000, 16(10):944-945.
- [33]O’Connell Motherway M, Zomer A, Leahy SC, Reunanen J, Bottacini F, Claesson MJ, O’Brien F, Flynn K, Casey PG, Moreno Munoz JA, Kearney B, Houston AM, O’Mahony C, Higgins DG, Shanahan F, Palva A, de Vos WM, Fitzgerald GF, Ventura M, O’Toole PW, van Sinderen D: Functional genome analysis of Bifidobacterium breve UCC2003 reveals type IVb tight adherence (Tad) pili as an essential and conserved host-colonization factor. Proc Natl Acad Sci U S A 2011, 108(27):11217-11222.
- [34]Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment search tool. J Mol Biol 1990, 215(3):403-410.
- [35]Riordan O: Studies on antimicrobial activity and genetic diversity of Bifidobacterium species: molecular characterization of a 5.75 kb plasmid and a chromosomally encoded recA gene homologue from Bifidobacterium breve .PhD thesis. National University of Ireland, Cork; 1998
- [36]Maze A, O’Connell-Motherway M, Fitzgerald G, Deutscher J, van Sinderen D: Identification and characterization of a fructose phosphotransferase system in Bifidobacterium breve UCC2003. Appl Environ Microbiol 2007, 73(2):545-553.
- [37]Law J, Buist G, Haandrikman A, Kok J, Venema G, Leenhouts K: A system to generate chromosomal mutations in Lactococcus lactis which allows fast analysis of targeted genes. J Bacteriol 1995, 177(24):7011-7018.
- [38]Álvarez-Martín P, O’Connell-Motherway M, van Sinderen D, Mayo B: Functional analysis of the pBC1 replicon from Bifidobacterium catenulatum L48. Appl Microbiol Biotechnol 2007, 76(6):1395-1402.
- [39]O’Connell Motherway M, O’Driscoll J, Fitzgerald GF, Van Sinderen D: Overcoming the restriction barrier to plasmid transformation and targeted mutagenesis in Bifidobacterium breve UCC2003. Microb Biotechnol 2009, 2(3):321-332.
- [40]Cronin M, Knobel M, O’Connell-Motherway M, Fitzgerald GF, van Sinderen D: Molecular dissection of a bifidobacterial replicon. Appl Environ Microbiol 2007, 73(24):7858-7866.
- [41]Ruiz L, Motherway MOC, Lanigan N, van Sinderen D: Transposon mutagenesis in Bifidobacterium breve: construction and characterization of a Tn5 transposon mutant library for Bifidobacterium breve UCC2003. PLoS One 2013, 8(5):e64699.
- [42]Zomer A, Fernandez M, Kearney B, Fitzgerald GF, Ventura M, van Sinderen D: An interactive regulatory network controls stress response in Bifidobacterium breve UCC2003. J Bacteriol 2009, 191(22):7039-7049.
- [43]García de la Nava J, Santaella DF, Alba JC, Carazo JM, Trelles O, Pascual-Montano A: Engene: the processing and exploratory analysis of gene expression data. Bioinformatics 2003, 19(5):657-658.
- [44]van Hijum S, de Jong A, Baerends R, Karsens H, Kramer N, Larsen R, den Hengst C, Albers C, Kok J, Kuipers O: A generally applicable validation scheme for the assessment of factors involved in reproducibility and quality of DNA-microarray data. BMC Genomics 2005, 6(1):77. BioMed Central Full Text
- [45]van Hijum SAFT, Garcia De La Nava J, Trelles O, Kok J, Kuipers OP: MicroPreP: a cDNA microarray data pre-processing framework. ApplBioinformatics 2003, 2(4):241-244.
- [46]Long AD, Mangalam HJ, Chan BYP, Tolleri L, Hatfield GW, Baldi P: Improved statistical inference from DNA microarray data using analysis of variance and a Bayesian statistical framework: analysis of global gene expression in Escherichia coli K12. J Biol Chem 2001, 276(23):19937-19944.
- [47]Kilcoyne M, Shah M, Gerlach JQ, Bhavanandan V, Nagaraj V, Smith AD, Fujiyama K, Sommer U, Costello CE, Olszewski N, Joshi L: O-glycosylation of protein subpopulations in alcohol-extracted rice proteins. J Plant Physiol 2009, 166(3):219-232.
- [48]Kilcoyne M, Gerlach JQ, Gough R, Gallagher ME, Kane M, Carrington SD, Joshi L: Construction of a natural mucin microarray and interrogation for biologically relevant glyco-epitopes. Anal Chem 2012, 84(7):3330-3338.
- [49]Bigge JC, Patel TP, Bruce JA, Goulding PN, Charles SM, Parekh RB: Nonselective and efficient fluorescent labeling of glycans using 2-amino benzamide and anthranilic acid. Anal Biochem 1995, 230(2):229-238.
- [50]Hardy MR: Glycan labeling with the fluorophores 2-aminobenzamide and anthranilic acid. In Techniques in Glycobiology. Marcel Dekker Inc, New York; 1997:359-376.
- [51]Watson D, O’Connell Motherway M, Schoterman MHC, van Neerven RJJ, Nauta A, van Sinderen D: Selective carbohydrate utilization by lactobacilli and bifidobacteria. J Appl Microbiol 2013, 114(4):1132-1146.
- [52]Turroni F, Strati F, Foroni E, Serafini F, Duranti S, van Sinderen D, Ventura M: Analysis of predicted carbohydrate transport systems encoded by Bifidobacterium bifidum PRL2010. Appl Environ Microbiol 2012, 78(14):5002-5012.
- [53]Pokusaeva K, Neves AR, Zomer A, O’Connell-Motherway M, MacSharry J, Curley P, Fitzgerald GF, van Sinderen D: Ribose utilization by the human commensal Bifidobacterium breve UCC2003. Microb Biotechnol 2010, 3(3):311-323.
- [54]O’Connell KJ, O’Connell Motherway M, Liedtke A, Fitzgerald GF, Ross RP, Stanton C, Zomer A, van Sinderen D: Transcription of two adjacent carbohydrate utilization gene clusters in Bifidobacterium breve UCC2003 is controlled by LacI- and Repressor Open reading frame Kinase (ROK)-type regulators. Appl Environ Microbiol 2014, 80(12):3604-3614.
- [55]Stahl M, Friis LM, Nothaft H, Liu X, Li J, Szymanski CM, Stintzi A: l-Fucose utilization provides Campylobacter jejuni with a competitive advantage. ProcNatl Acad Sci U S A 2011, 108(17):7194-7199.
- [56]Frey PA: The Leloir pathway: a mechanistic imperative for three enzymes to change the stereochemical configuration of a single carbon in galactose. The FASEB Journal 1996, 10(4):461-470.
- [57]Nishimoto M, Kitaoka M: Identification of N-acetylhexosamine 1-kinase in the complete lacto-N-biose I/galacto-N-biose metabolic pathway in Bifidobacterium longum. Appl Environ Microbiol 2007, 73(20):6444-6449.
- [58]Kitaoka M, Tian J, Nishimoto M: Novel putative galactose operon involving lacto-N-biose phosphorylase in Bifidobacterium longum. Appl Environ Microbiol 2005, 71(6):3158-3162.
- [59]Derensy-Dron D, Krzewinski F, Brassart C, Bouquelet S: β-1,3-Galactosyl-N-acetylhexosamine phosphorylase from Bifidobacterium bifidum DSM 20082: characterization, partial purification and relation to mucin degradation. Biotechnol Appl Biochem 1999, 29(1):3-10.
- [60]Suzuki R, Wada J, Katayama T, Fushinobu S, Wakagi T, Shoun H, Sugimoto H, Tanaka A, Kumagai H, Ashida H, Kitaoka M, Yamamoto K: Structural and thermodynamic analyses of solute-binding protein from Bifidobacterium longum specific for core 1 disaccharide and lacto-N-biose I. J Biol Chem 2008, 283(19):13165-13173.
- [61]Kiyohara M, Tanigawa K, Chaiwangsri T, Katayama T, Ashida H, Yamamoto K: An exo-α-sialidase from bifidobacteria involved in the degradation of sialyloligosaccharides in human milk and intestinal glycoconjugates. Glycobiology 2011, 21(4):437-447.
- [62]Katayama T, Fujita K, Yamamoto K: Novel bifidobacterial glycosidases acting on sugar chains of mucin glycoproteins. J Biosci Bioeng 2005, 99(5):457-465.
- [63]De Bruyn F, Beauprez J, Maertens J, Soetaert W, De Mey M: Unraveling the Leloir pathway of Bifidobacterium bifidum: significance of the uridylyltransferases. Appl Environ Microbiol 2013, 79(22):7028-7035.
- [64]Turroni F, Foroni E, Pizzetti P, Giubellini V, Ribbera A, Merusi P, Cagnasso P, Bizzarri B, de’Angelis GL, Shanahan F, van Sinderen D, Ventura M: Exploring the diversity of the bifidobacterial population in the human intestinal tract. Appl Environ Microbiol 2009, 75(6):1534-1545.
- [65]Sonnenburg JL, Xu J, Leip DD, Chen C-H, Westover BP, Weatherford J, Buhler JD, Gordon JI: Glycan foraging in vivo by an intestine-adapted bacterial symbiont. Science 2005, 307(5717):1955-1959.
- [66]Salyers AA, West SE, Vercellotti JR, Wilkins TD: Fermentation of mucins and plant polysaccharides by anaerobic bacteria from the human colon. Appl Environ Microbiol 1977, 34(5):529-533.
- [67]Salyers AA, Palmer JK, Wilkins TD: Degradation of polysaccharides by intestinal bacterial enzymes. Am J Clin Nutr 1978, 31(10):S128-S130.
- [68]Crost EH, Tailford LE, Le Gall G, Fons M, Henrissat B, Juge N: Utilisation of mucin glycans by the human gut symbiont Ruminococcus gnavus is strain-dependent. PLoS One 2013, 8(10):e76341.
- [69]Marcobal A, Southwick AM, Earle KA, Sonnenburg JL: A refined palate: bacterial consumption of host glycans in the gut. Glycobiology 2013, 23(9):1038-1046.
- [70]Pacheco AR, Curtis MM, Ritchie JM, Munera D, Waldor MK, Moreira CG, Sperandio V: Fucose sensing regulates bacterial intestinal colonization. Nature 2012, 492(7427):113-117.
- [71]Ng KM, Ferreyra JA, Higginbottom SK, Lynch JB, Kashyap PC, Gopinath S, Naidu N, Choudhury B, Weimer BC, Monack DM, Sonnenburg JL: Microbiota-liberated host sugars facilitate post-antibiotic expansion of enteric pathogens. Nature 2013, 502(7469):96-99.
- [72]Bäckhed F, Ley RE, Sonnenburg JL, Peterson DA, Gordon JI: Host-bacterial mutualism in the human intestine. Science 2005, 307(5717):1915-1920.
- [73]Sela D, Mills D: Nursing our microbiota: molecular linkages between bifidobacteria and milk oligosaccharides. Trends Microbiol 2010, 18(7):298-307.
- [74]Belenguer A, Duncan SH, Calder AG, Holtrop G, Louis P, Lobley GE, Flint HJ: Two routes of metabolic cross-feeding between Bifidobacterium adolescentis and butyrate-producing anaerobes from the human gut. Appl Environ Microbiol 2006, 72(5):3593-3599.
- [75]Velázquez O, Lederer H, Rombeau J: Butyrate and the colonocyte. Digest Dis Sci 1996, 41(4):727-739.
- [76]Roediger WE: Role of anaerobic bacteria in the metabolic welfare of the colonic mucosa in man. Gut 1980, 21(9):793-798.
PDF