期刊论文详细信息
BMC Genomics
Concurrent transcriptional profiling of Dirofilaria immitis and its Wolbachia endosymbiont throughout the nematode life cycle reveals coordinated gene expression
Michelle L Michalski1  Barton E Slatko2  Andrew R Moorhead3  Jeremy M Foster2  Molly D Riggs3  Christopher C Evans3  Ashley N Luck2 
[1] Department of Biology and Microbiology, University of Wisconsin Oshkosh, Oshkosh, WI 54901, USA;New England Biolabs, Inc., Genome Biology Division, 240 County Road, Ipswich, MA 01938, USA;Department of Infectious Diseases, University of Georgia, College Veterinary Medicine, 501 D. W. Brooks Drive, Athens, GA 30602, USA
关键词: RNA-seq;    Wolbachia;    Endosymbiosis;    Transcriptomics;    Filaria;    Nematode;   
Others  :  1090318
DOI  :  10.1186/1471-2164-15-1041
 received in 2014-08-25, accepted in 2014-11-14,  发布年份 2014
PDF
【 摘 要 】

Background

Dirofilaria immitis, or canine heartworm, is a filarial nematode parasite that infects dogs and other mammals worldwide. Current disease control relies on regular administration of anthelmintic preventives, however, relatively poor compliance and evidence of developing drug resistance could warrant alternative measures against D. immitis and related human filarial infections be taken. As with many other filarial nematodes, D. immitis contains Wolbachia, an obligate bacterial endosymbiont thought to be involved in providing certain critical metabolites to the nematode. Correlations between nematode and Wolbachia transcriptomes during development have not been examined. Therefore, we detailed the developmental transcriptome of both D. immitis and its Wolbachia (wDi) in order to gain a better understanding of parasite-endosymbiont interactions throughout the nematode life cycle.

Results

Over 215 million single-end 50 bp reads were generated from total RNA from D. immitis adult males and females, microfilariae (mf) and third and fourth-stage larvae (L3 and L4). We critically evaluated the transcriptomes of the various life cycle stages to reveal sex-biased transcriptional patterns, as well as transcriptional differences between larval stages that may be involved in larval maturation. Hierarchical clustering revealed both D. immitis and wDi transcriptional activity in the L3 stage is clearly distinct from other life cycle stages. Interestingly, a large proportion of both D. immitis and wDi genes display microfilarial-biased transcriptional patterns. Concurrent transcriptome sequencing identified potential molecular interactions between parasite and endosymbiont that are more prominent during certain life cycle stages. In support of metabolite provisioning between filarial nematodes and Wolbachia, the synthesis of the critical metabolite, heme, by wDi appears to be synchronized in a stage-specific manner (mf-specific) with the production of heme-binding proteins in D. immitis.

Conclusions

Our integrated transcriptomic study has highlighted interesting correlations between Wolbachia and D. immitis transcription throughout the life cycle and provided a resource that may be used for the development of novel intervention strategies, not only for the treatment and prevention of D. immitis infections, but of other closely related human parasites as well.

【 授权许可】

   
2014 Luck et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150128160038747.pdf 1137KB PDF download
Figure 4. 93KB Image download
Figure 3. 44KB Image download
Figure 2. 77KB Image download
Figure 1. 67KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]McCall JW, Genchi C, Kramer LH, Guerrero J, Venco L: Heartworm disease in animals and humans. Adv Parasitol 2008, 66:193-285.
  • [2]Kotani T, Powers KG: Developmental stages of Dirofilaria immitis in the dog. Am J Vet Res 1982, 43(12):2199-2206.
  • [3]Taylor AE: The development of Dirofilaria immitis in the mosquito Aedes aegypti. J Helminthol 1960, 34:27-38.
  • [4]Bowman DD, Atkins CE: Heartworm biology, treatment, and control. Vet Clin North Am Small Anim Pract 2009, 39(6):1127-1158. vii
  • [5]Lee AC, Montgomery SP, Theis JH, Blagburn BL, Eberhard ML: Public health issues concerning the widespread distribution of canine heartworm disease. Trends Parasitol 2010, 26(4):168-173.
  • [6]Brown HE, Harrington LC, Kaufman PE, McKay T, Bowman DD, Nelson CT, Wang D, Lund R: Key factors influencing canine heartworm, Dirofilaria immitis, in the United States. Parasit Vectors 2012, 5:245. BioMed Central Full Text
  • [7]Wolstenholme AJ, Fairweather I, Prichard R, Von Samson-Himmelstjerna G, Sangster NC: Drug resistance in veterinary helminths. Trends Parasitol 2004, 20(10):469-476.
  • [8]Kaplan RM: Drug resistance in nematodes of veterinary importance: a status report. Trends Parasitol 2004, 20(10):477-481.
  • [9]Geary TG, Bourguinat C, Prichard RK: Evidence for macrocyclic lactone anthelmintic resistance in Dirofilaria immitis. Top Companion Anim Med 2011, 26(4):186-192.
  • [10]Bourguinat C, Keller K, Bhan A, Peregrine A, Geary T, Prichard R: Macrocyclic lactone resistance in Dirofilaria immitis. Vet Parasitol 2011, 181(2–4):388-392.
  • [11]Bourguinat C, Keller K, Blagburn B, Schenker R, Geary TG, Prichard RK: Correlation between loss of efficacy of macrocyclic lactone heartworm anthelmintics and P-glycoprotein genotype. Vet Parasitol 2011, 176(4):374-381.
  • [12]Foster J, Ganatra M, Kamal I, Ware J, Makarova K, Ivanova N, Bhattacharyya A, Kapatral V, Kumar S, Posfai J, Vincze T, Ingram J, Moran L, Lapidus A, Omelchenko M, Kyrpides N, Ghedin E, Wang S, Goltsman E, Joukov V, Ostrovskaya O, Tsukerman K, Mazur M, Comb D, Koonin E, Slatko B: The Wolbachia genome of Brugia malayi: endosymbiont evolution within a human pathogenic nematode. PLoS Biol 2005, 3(4):e121.
  • [13]Bosshardt SC, McCall JW, Coleman SU, Jones KL, Petit TA, Klei TR: Prophylactic activity of tetracycline against Brugia pahangi infection in jirds (Meriones unguiculatus). J Parasitol 1993, 79(5):775-777.
  • [14]Bandi C, McCall JW, Genchi C, Corona S, Venco L, Sacchi L: Effects of tetracycline on the filarial worms Brugia pahangi and Dirofilaria immitis and their bacterial endosymbionts Wolbachia. Int J Parasitol 1999, 29(2):357-364.
  • [15]Gasser RB, Cantacessi C: Heartworm genomics: unprecedented opportunities for fundamental molecular insights and new intervention strategies. Top Companion Anim Med 2011, 26(4):193-199.
  • [16]McCall JW: What is the rationale for the doxycyclin dose of 10 mg/kg twice daily for one month in the American Heartworm Society Guidelines for treatment of heartworm-infected dogs? American Heartworm Society Bulletin 2014, 41(1):8-9.
  • [17]Kramer L, Grandi G, Leoni M, Passeri B, McCall J, Genchi C, Mortarino M, Bazzocchi C: Wolbachia and its influence on the pathology and immunology of Dirofilaria immitis infection. Vet Parasitol 2008, 158(3):191-195.
  • [18]Bazzocchi C, Mortarino M, Grandi G, Kramer LH, Genchi C, Bandi C, Genchi M, Sacchi L, McCall JW: Combined ivermectin and doxycycline treatment has microfilaricidal and adulticidal activity against Dirofilaria immitis in experimentally infected dogs. Int J Parasitol 2008, 38(12):1401-1410.
  • [19]Godel C, Kumar S, Koutsovoulos G, Ludin P, Nilsson D, Comandatore F, Wrobel N, Thompson M, Schmid CD, Goto S, Bringaud F, Wolstenholme A, Bandi C, Epe C, Kaminsky R, Blaxter M, Maser P: The genome of the heartworm, Dirofilaria immitis, reveals drug and vaccine targets. Faseb J 2012, 26(11):4650-4661.
  • [20]McCall JW: The role of arthropods in the development of animal models for filariasis research. J Georgia Entomol Soc 1981, 16:283-293.
  • [21]Giardine B, Riemer C, Hardison RC, Burhans R, Elnitski L, Shah P, Zhang Y, Blankenberg D, Albert I, Taylor J, Miller W, Kent W, Nekrutenko A: Galaxy: a platform for interactive large-scale genome analysis. Genome Res 2005, 15(10):1451-1455.
  • [22]Blankenberg D, Von Kuster G, Coraor N, Ananda G, Lazarus R, Mangan M, Nekrutenko A, Taylor J: Galaxy: a web-based genome analysis tool for experimentalists. Curr Protoc Mol Biol 2010, Chapter 19(Unit 19 10):11-21.
  • [23]Goecks J, Nekrutenko A, Taylor J: Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biol 2010, 11(8):R86. BioMed Central Full Text
  • [24]Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, Van Baren MJ, Salzberg SL, Wold BJ, Pachter L: Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 2010, 28(5):511-515.
  • [25]FastQC: a quality control tool for high throughput sequence data http://www.bioinformatics.babraham.ac.uk/projects/fastqc webcite
  • [26]Trapnell C, Pachter L, Salzberg SL: TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 2009, 25(9):1105-1111.
  • [27]Thorvaldsdottir H, Robinson JT, Mesirov JP: Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform 2013, 14(2):178-192.
  • [28]Langmead B, Trapnell C, Pop M, Salzberg SL: Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 2009, 10(3):R25. BioMed Central Full Text
  • [29]Eisen MB, Spellman PT, Brown PO, Botstein D: Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci U S A 1998, 95(25):14863-14868.
  • [30]Zdobnov EM, Apweiler R: InterProScan–an integration platform for the signature-recognition methods in InterPro. Bioinformatics 2001, 17(9):847-848.
  • [31]Quevillon E, Silventoinen V, Pillai S, Harte N, Mulder N, Apweiler R, Lopez R: InterProScan: protein domains identifier. Nucleic Acids Res 2005, 33(Web Server issue):W116-W120.
  • [32]Zheng Q, Wang XJ: GOEAST: a web-based software toolkit for Gene Ontology enrichment analysis. Nucleic Acids Res 2008, 36(Web Server issue):W358-W363.
  • [33]Darby AC, Armstrong SD, Bah GS, Kaur G, Hughes MA, Kay SM, Koldkjaer P, Rainbow L, Radford AD, Blaxter ML, Tanya VN, Trees AJ, Cordaux R, Wastling JM, Makepeace BL: Analysis of gene expression from the Wolbachia genome of a filarial nematode supports both metabolic and defensive roles within the symbiosis. Genome Res 2012, 22(12):2467-2477.
  • [34]Kawahara Y, Oono Y, Kanamori H, Matsumoto T, Itoh T, Minami E: Simultaneous RNA-seq analysis of a mixed transcriptome of rice and blast fungus interaction. PLoS One 2012, 7(11):e49423.
  • [35]Fenn K, Blaxter M: Quantification of Wolbachia bacteria in Brugia malayi through the nematode lifecycle. Mol Biochem Parasitol 2004, 137(2):361-364.
  • [36]McGarry HF, Egerton GL, Taylor MJ: Population dynamics of Wolbachia bacterial endosymbionts in Brugia malayi. Mol Biochem Parasitol 2004, 135(1):57-67.
  • [37]Fischer K, Beatty WL, Jiang D, Weil GJ, Fischer PU: Tissue and stage-specific distribution of Wolbachia in Brugia malayi. PLoS Negl Trop Dis 2011, 5(5):e1174.
  • [38]Choi YJ, Ghedin E, Berriman M, McQuillan J, Holroyd N, Mayhew GF, Christensen BM, Michalski ML: A deep sequencing approach to comparatively analyze the transcriptome of lifecycle stages of the filarial worm. Brugia malayi PLoS Negl Trop Dis 2011, 5(12):e1409.
  • [39]Shea C, Richer J, Tzertzinis G, Maina CV: An EcR homolog from the filarial parasite, Dirofilaria immitis requires a ligand-activated partner for transactivation. Mol Biochem Parasitol 2010, 171(2):55-63.
  • [40]Li BW, Rush AC, Jiang DJ, Mitreva M, Abubucker S, Weil GJ: Gender-associated genes in filarial nematodes are important for reproduction and potential intervention targets. PLoS Negl Trop Dis 2011, 5(1):e947.
  • [41]Mutafchiev Y, Bain O, Williams Z, McCall JW, Michalski ML: Intraperitoneal development of the filarial nematode Brugia malayi in the Mongolian jird (Meriones unguiculatus). Parasitol Res 2014, 113(5):1827-1835.
  • [42]Storey DM, Al-Mukhtar AS: Vaccination of Jirds, Meriones unguiculatus, against Litomosoides carinii and Brugia pahangi using irradiate larvae of L. carinii. Tropenmed Parasitol 1982, 33(1):23-24.
  • [43]Mejia JS, Carlow CK: An analysis of the humoral immune response of dogs following vaccination with irradiated infective larvae of Dirofilaria immitis. Parasite Immunol 1994, 16(3):157-164.
  • [44]Le Goff L, Martin C, Oswald IP, Vuong PN, Petit G, Ungeheuer MN, Bain O: Parasitology and immunology of mice vaccinated with irradiated Litomosoides sigmodontis larvae. Parasitology 2000, 120(Pt 3):271-280.
  • [45]Babayan SA, Attout T, Harris A, Taylor MD, Le Goff L, Vuong PN, Renia L, Allen JE, Bain O: Vaccination against filarial nematodes with irradiated larvae provides long-term protection against the third larval stage but not against subsequent life cycle stages. Int J Parasitol 2006, 36(8):903-914.
  • [46]Bain O, Casiraghi M, Martin C, Uni S: The nematoda Filarioidea: critical analysis linking molecular and traditional approaches. Parasite 2008, 15(3):342-348.
  • [47]Bennuru S, Semnani R, Meng Z, Ribeiro JM, Veenstra TD, Nutman TB: Brugia malayi excreted/secreted proteins at the host/parasite interface: stage- and gender-specific proteomic profiling. PLoS Negl Trop Dis 2009, 3(4):e410.
  • [48]Richer JK, Hunt WG, Sakanari JA, Grieve RB: Dirofilaria immitis: effect of fluoromethyl ketone cysteine protease inhibitors on the third- to fourth-stage molt. Exp Parasitol 1993, 76(3):221-231.
  • [49]Lustigman S, McKerrow JH, Shah K, Lui J, Huima T, Hough M, Brotman B: Cloning of a cysteine protease required for the molting of Onchocerca volvulus third stage larvae. J Biol Chem 1996, 271(47):30181-30189.
  • [50]Ford L, Zhang J, Liu J, Hashmi S, Fuhrman JA, Oksov Y, Lustigman S: Functional analysis of the cathepsin-like cysteine protease genes in adult Brugia malayi using RNA interference. PLoS Negl Trop Dis 2009, 3(2):e377.
  • [51]Arumugam S, Wei J, Ward D, Abraham D, Lustigman S, Zhan B, Klei TR: Vaccination with a genetically modified Brugia malayi cysteine protease inhibitor-2 reduces adult parasite numbers and affects the fertility of female worms following a subcutaneous challenge of Mongolian gerbils (Meriones unguiculatus) with B. malayi infective larvae. Int J Parasitol 2014.
  • [52]Babayan SA, Luo H, Gray N, Taylor DW, Allen JE: Deletion of parasite immune modulatory sequences combined with immune activating signals enhances vaccine mediated protection against filarial nematodes. PLoS Negl Trop Dis 2012, 6(12):e1968.
  • [53]Gregory WF, Atmadja AK, Allen JE, Maizels RM: The abundant larval transcript-1 and -2 genes of Brugia malayi encode stage-specific candidate vaccine antigens for filariasis. Infect Immun 2000, 68(7):4174-4179.
  • [54]Frank GR, Grieve RB: Metabolic labeling of Dirofilaria immitis third- and fourth-stage larvae and their excretory-secretory products. J Parasitol 1991, 77(6):950-956.
  • [55]Townson S, Bianco AE: Immunization of calves against the microfilariae of Onchocerca lienalis. J Helminthol 1982, 56(4):297-303.
  • [56]Makepeace BL, Jensen SA, Laney SJ, Nfon CK, Njongmeta LM, Tanya VN, Williams SA, Bianco AE, Trees AJ: Immunisation with a multivalent, subunit vaccine reduces patent infection in a natural bovine model of onchocerciasis during intense field exposure. PLoS Negl Trop Dis 2009, 3(11):e544.
  • [57]Ziewer S, Hubner MP, Dubben B, Hoffmann WH, Bain O, Martin C, Hoerauf A, Specht S: Immunization with L. sigmodontis microfilariae reduces peripheral microfilaraemia after challenge infection by inhibition of filarial embryogenesis. PLoS Negl Trop Dis 2012, 6(3):e1558.
  • [58]Kozek WJ: Unusual cilia in the microfilaria of Dirofilaria immitis. J Parasitol 1968, 54(4):838-844.
  • [59]Kozek WJ, Raccurt C: Ultrastructure of Mansonella ozzardi microfilaria, with a comparison of the South American (Simuliid-transmitted) and the Carribean (Culicoid-transmitted) forms. Tropenmed Parasitol 1983, 34:38-53.
  • [60]Kozek WJ: Ultrastructure of the mcrofilaria of Dirofilaria immitis. J Parasitol 1971, 57(5):1052-1067.
  • [61]Crump A, Omura S: Ivermectin, ‘wonder drug’ from Japan: the human use perspective. Proc Jpn Acad Ser B Phys Biol Sci 2011, 87(2):13-28.
  • [62]Adelsberger H, Lepier A, Dudel J: Activation of rat recombinant alpha(1)beta(2)gamma(2S) GABA(A) receptor by the insecticide ivermectin. Eur J Pharmacol 2000, 394(2–3):163-170.
  • [63]Dawson GR, Wafford KA, Smith A, Marshall GR, Bayley PJ, Schaeffer JM, Meinke PT, Mckernan RM: Anticonvulsant and adverse effects of avermectin analogs in mice are mediated through the γ-aminobutyric acid A receptor. J Pharmacol Exp Ther 2000, 295:1051-1060.
  • [64]Poole CB, Davis PJ, Jin J, McReynolds LA: Cloning and bioinformatic identification of small RNAs in the filarial nematode. Brugia malayi Mol Biochem Parasitol 2010, 169(2):87-94.
  • [65]Dunning Hotopp JC, Clark ME, Oliveira DC, Foster JM, Fischer P, Munoz Torres MC, Giebel JD, Kumar N, Ishmael N, Wang S, Ingram J, Nene RV, Shepard J, Tomkins J, Richards S, Spiro DJ, Ghedin E, Slatko BE, Tettelin H, Werren JH: Widespread lateral gene transfer from intracellular bacteria to multicellular eukaryotes. Science 2007, 317(5845):1753-1756.
  • [66]Ioannidis P, Johnston KL, Riley DR, Kumar N, White JR, Olarte KT, Ott S, Tallon LJ, Foster JM, Taylor MJ, Dunning Hotopp JC: Extensively duplicated and transcriptionally active recent lateral gene transfer from a bacterial Wolbachia endosymbiont to its host filarial nematode Brugia malayi. BMC Genomics 2013, 14:639. BioMed Central Full Text
  • [67]Wu Y, Preston G, Bianco AE: Chitinase is stored and secreted from the inner body of microfilariae and has a role in exsheathment in the parasitic nematode Brugia malayi. Mol Biochem Parasitol 2008, 161:55-62.
  • [68]Adam R, Kaltmann B, Rudin W, Friedrich T, Marti T, Lucius R: Identification of chitinase as the immunodominant filarial antigen recognized by sera of vaccinated rodents. J Biol Chem 1996, 271(3):1441-1447.
  • [69]Wu Y, Adam R, Williams SA, Bianco AE: Chitinase genes expressed by infective larvae of the filarial nematodes, Acanthocheilonema viteae and Onchocerca volvulus. Mol Biochem Parasitol 1996, 75(2):207-219.
  • [70]Wu Y, Egerton G, Underwood AP, Sakuda S, Bianco AE: Expression and secretion of a larval-specific chitinase (family 18 glycosyl hydrolase) by the infective stages of the parasitic nematode. Onchocerca volvulus J Biol Chem 2001, 276(45):42557-42564.
  • [71]Fuhrman JA: Filarial Chtinases. Parasitol Today 1995, 11(7):259-261.
  • [72]Li Z, Garner AL, Gloeckner C, Janda KD, Carlow CK: Targeting the Wolbachia cell division protein FtsZ as a new approach for antifilarial therapy. PLoS Negl Trop Dis 2011, 5(11):e1411.
  • [73]Dunning Hotopp JC, Lin M, Madupu R, Crabtree J, Angiuoli SV, Eisen JA, Seshadri R, Ren Q, Wu M, Utterback TR, Smith S, Lewis M, Khouri H, Zhang C, Niu H, Lin Q, Ohashi N, Zhi N, Nelson W, Brinkac LM, Dodson RJ, Rosovitz MJ, Sundaram J, Daugherty SC, Davidsen T, Durkin AS, Gwinn M, Haft DH, Selengut JD, Sullivan SA, et al.: Comparative genomics of emerging human ehrlichiosis agents. PLoS Genet 2006, 2(2):e21.
  • [74]Brownlie JC, Adamski M, Slatko B, McGraw EA: Diversifying selection and host adaptation in two endosymbiont genomes. BMC Evol Biol 2007, 7:68. BioMed Central Full Text
  • [75]Hamza I, Dailey HA: One ring to rule them all: trafficking of heme and heme synthesis intermediates in the metazoans. Biochim Biophys Acta 2012, 1823(9):1617-1632.
  • [76]Wu B, Novelli J, Foster J, Vaisvila R, Conway L, Ingram J, Ganatra M, Rao AU, Hamza I, Slatko B: The heme biosynthetic pathway of the obligate Wolbachia endosymbiont of Brugia malayi as a potential anti-filarial drug target. PLoS Negl Trop Dis 2009, 3(7):e475.
  • [77]Sheftel AD, Mason AB, Ponka P: The long history of iron in the Universe and in health and disease. Biochim Biophys Acta 2012, 1820(3):161-187.
  • [78]Nagaraj VA, Sundaram B, Varadarajan NM, Subramani PA, Kalappa DM, Ghosh SK, Padmanaban G: Malaria parasite-synthesized heme is essential in the mosquito and liver stages and complements host heme in the blood stages of infection. PLoS Pathog 2013, 9(8):e1003522.
  • [79]Li Z, Carlow CK: Characterization of transcription factors that regulate the type IV secretion system and riboflavin biosynthesis in Wolbachia of Brugia malayi. PLoS One 2012, 7(12):e51597.
  • [80]Lienhart WD, Gudipati V, Macheroux P: The human flavoproteome. Arch Biochem Biophys 2013, 535(2):150-162.
  • [81]Henrichfreise B, Schiefer A, Schneider T, Nzukou E, Poellinger C, Hoffmann TJ, Johnston KL, Moelleken K, Wiedemann I, Pfarr K, Hoefauf A, Shi HG: Functional conservation of the lipid II biosynthesis pathway in the cell wall-less bacteria Chlamydia and Wolbachia: why is lipid II needed? Mol Microbiol 2009, 73(5):913-923.
  • [82]Bennuru S, Meng Z, Ribeiro JM, Semnani RT, Ghedin E, Chan K, Lucas DA, Veenstra TD, Nutman TB: Stage-specific proteomic expression patterns of the human filarial parasite Brugia malayi and its endosymbiont Wolbachia. Proc Natl Acad Sci U S A 2011, 108(23):9649-9654.
  • [83]Vollmer J, Schiefer A, Schneider T, Julicher K, Johnston KL, Taylor MJ, Sahl HG, Hoerauf A, Pfarr K: Requirement of lipid II biosynthesis for cell division in cell wall-less Wolbachia, endobacteria of arthropods and filarial nematodes. Int J Med Microbiol 2013, 303(3):140-149.
  • [84]Chappell J: Biochemistry and molecular biology of the isoprenoid biosynthetic pathway in plants. Annu Rev Plant Physiol Plant Mol Biol 1995, 46:521-547.
  • [85]McGarvey DJ, Croteau R: Terpenoid metabolism. Plant Cell 1995, 7(7):1015-1026.
  • [86]Rohmer M: The discovery of a mevalonate-independent pathway for isoprenoid biosynthesis in bacteria, algae and higher plants. Nat Prod Rep 1999, 16(5):565-574.
  • [87]Rodriguez-Concepcion M, Boronat A: Elucidation of the methylerythritol phosphate pathway for isoprenoid biosynthesis in bacteria and plastids. A metabolic milestone achieved through genomics. Plant Physiol 2002, 130(3):1079-1089.
  • [88]Veenendaal AK, van der Does C, Driessen AJ: The protein-conducting channel SecYEG. Biochim Biophys Acta 2004, 1694(1–3):81-95.
  • [89]Mori H, Ito K: The Sec protein-translocation pathway. Trends Microbiol 2001, 9(10):494-500.
  • [90]Buchanan G, De Leeuw E, Stanley NR, Wexler M, Berks BC, Sargent F, Palmer T: Functional complexity of the twin-arginine translocase TatC component revealed by site-directed mutagenesis. Mol Microbiol 2002, 43(6):1457-1470.
  • [91]Nunez PA, Soria M, Farber MD: The twin-arginine translocation pathway in alpha-proteobacteria is functionally preserved irrespective of genomic and regulatory divergence. PLoS One 2012, 7(3):e33605.
  • [92]Jack RL, Sargent F, Berks BC, Sawers G, Palmer T: Constitutive expression of Escherichia coli tat genes indicates an important role for the twin-arginine translocase during aerobic and anaerobic growth. J Bacteriol 2001, 183(5):1801-1804.
  • [93]Masui S, Sasaki T, Ishikawa H: Genes for the type IV secretion system in an intracellular symbiont, Wolbachia, a causative agent of various sexual alterations in arthropods. J Bacteriol 2000, 182(22):6529-6531.
  • [94]Pichon S, Bouchon D, Cordaux R, Chen L, Garrett RA, Greve P: Conservation of the Type IV secretion system throughout Wolbachia evolution. Biochem Biophys Res Commun 2009, 385(4):557-562.
  • [95]Rances E, Voronin D, Tran-Van V, Mavingui P: Genetic and functional characterization of the type IV secretion system in Wolbachia. J Bacteriol 2008, 190(14):5020-5030.
  • [96]Christie PJ, Whitaker N, Gonzalez-Rivera C: Mechanism and structure of the bacterial type IV secretion systems. Biochim Biophys Acta 2014.
  • [97]Koppenhofer HS, Gaugler R: Defensive Mutualism in Microbial Symbiosis. Boca Raton, FL: CRC Press; 2010.
  文献评价指标  
  下载次数:48次 浏览次数:10次