期刊论文详细信息
BMC Medical Genomics
Correlations of gene expression with ratings of inattention and hyperactivity/impulsivity in tourette syndrome: a pilot study
Frank R Sharp3  Julie B Schweitzer2  Pieter J Hoekstra1  Netty GP Bos-Veneman1  Blythe A Corbett2  Joan R Gunther3  Glen C Jickling3  Bradley P Ander3  Boryana Stamova3  Yingfang Tian4 
[1] Department of Psychiatry, University Medical Center Groningen, University of Groningen, Groningen, Netherlands;MIND Institute and Department of Psychiatry, University of California at Davis, Sacramento, CA, USA;MIND Institute and Department of Neurology, University of California at Davis, 2805 50th St., Room 2434, Sacramento, CA, 95817, USA;Laboratory of Gene Therapy, College of Life sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
关键词: Tourette syndrome;    Microarray;    Genomics;    RNA expression;    Blood;    Attention-deficit hyperactivity disorder (ADHD);   
Others  :  1134561
DOI  :  10.1186/1755-8794-5-49
 received in 2012-05-05, accepted in 2012-10-09,  发布年份 2012
PDF
【 摘 要 】

Background

Inattentiveness, impulsivity and hyperactivity are the primary behaviors associated with attention-deficit hyperactivity disorder (ADHD). Previous studies showed that peripheral blood gene expression signatures can mirror central nervous system disease. Tourette syndrome (TS) is associated with inattention (IA) and hyperactivity/impulsivity (HI) symptoms over 50% of the time. This study determined if gene expression in blood correlated significantly with IA and/or HI rating scale scores in participants with TS.

Methods

RNA was isolated from the blood of 21 participants with TS, and gene expression measured on Affymetrix human U133 Plus 2.0 arrays. To identify the genes that correlated with Conners’ Parents Ratings of IA and HI ratings of symptoms, an analysis of covariance (ANCOVA) was performed, controlling for age, gender and batch.

Results

There were 1201 gene probesets that correlated with IA scales, 1625 that correlated with HI scales, and 262 that correlated with both IA and HI scale scores (P<0.05, |Partial correlation (rp)|>0.4). Immune, catecholamine and other neurotransmitter pathways were associated with IA and HI behaviors. A number of the identified genes (n=27) have previously been reported in ADHD genetic studies. Many more genes correlated with either IA or HI scales alone compared to those that correlated with both IA and HI scales.

Conclusions

These findings support the concept that the pathophysiology of ADHD and/or its subtypes in TS may involve the interaction of multiple genes. These preliminary data also suggest gene expression may be useful for studying IA and HI symptoms that relate to ADHD in TS and perhaps non-TS participants. These results will need to be confirmed in future studies.

【 授权许可】

   
2012 Tian et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150306020210774.pdf 472KB PDF download
Figure 2. 80KB Image download
Figure 1. 35KB Image download
【 图 表 】

Figure 1.

Figure 2.

【 参考文献 】
  • [1]McLoughlin G, Ronald A, Kuntsi J, Asherson P, Plomin R: Genetic support for the dual nature of attention deficit hyperactivity disorder: substantial genetic overlap between the inattentive and hyperactive-impulsive components. J Abnorm Child Psychol 2007, 35(6):999-1008.
  • [2]Bush G: Attention-deficit/hyperactivity disorder and attention networks. Neuropsychopharmacology 2010, 35(1):278-300.
  • [3]Conners CK: Conners’ rating scales-revised. In. Tonawanda, NY: Multi-Health Systems, Inc; 1997.
  • [4]Baeyens D, Roeyers H, Walle JV: Subtypes of attention-deficit/hyperactivity disorder (ADHD): distinct or related disorders across measurement levels? Child Psychiatry Hum Dev 2006, 36(4):403-417.
  • [5]Comings DE: Clinical and molecular genetics of ADHD and Tourette syndrome. Two related polygenic disorders. Ann N Y Acad Sci 2001, 931:50-83.
  • [6]Franke B, Neale BM, Faraone SV: Genome-wide association studies in ADHD. Hum Genet 2009, 126(1):13-50.
  • [7]Lit L, Gilbert DL, Walker W, Sharp FR: A subgroup of Tourette's patients overexpress specific natural killer cell genes in blood: a preliminary report. Am J Med Genet B Neuropsychiatr Genet 2007, 144B(7):958-963.
  • [8]Deng H, Gao K, Jankovic J: The genetics of Tourette syndrome. Nat Rev Neurol 2012, 8(4):203-213.
  • [9]O'Roak BJ, Morgan TM, Fishman DO, Saus E, Alonso P, Gratacos M, Estivill X, Teltsh O, Kohn Y, Kidd KK, et al.: Additional support for the association of SLITRK1 var321 and Tourette syndrome. Mol Psychiatry 2010, 15(5):447-450.
  • [10]Tian Y, Liao IH, Zhan X, Gunther JR, Ander BP, Liu D, Lit L, Jickling GC, Corbett BA, Bos-Veneman NG, et al.: Exon expression and alternatively spliced genes in Tourette Syndrome. Am J Med Genet B Neuropsychiatr Genet 2011, 156B(1):72-78.
  • [11]Martino D, Dale RC, Gilbert DL, Giovannoni G, Leckman JF: Immunopathogenic mechanisms in tourette syndrome: A critical review. Mov Disord 2009, 24(9):1267-1279.
  • [12]Sullivan PF, Fan C, Perou CM: Evaluating the comparability of gene expression in blood and brain. Am J Med Genet B Neuropsychiatr Genet 2006, 141B(3):261-268.
  • [13]Baym CL, Corbett BA, Wright SB, Bunge SA: Neural correlates of tic severity and cognitive control in children with Tourette syndrome. Brain 2008, 131(Pt 1):165-179.
  • [14]Dorval KM, Wigg KG, Crosbie J, Tannock R, Kennedy JL, Ickowicz A, Pathare T, Malone M, Schachar R, Barr CL: Association of the glutamate receptor subunit gene GRIN2B with attention-deficit/hyperactivity disorder. Genes Brain Behav 2007, 6(5):444-452.
  • [15]Forero DA, Arboleda GH, Vasquez R, Arboleda H: Candidate genes involved in neural plasticity and the risk for attention-deficit hyperactivity disorder: a meta-analysis of 8 common variants. J Psychiatry Neurosci 2009, 34(5):361-366.
  • [16]McCracken JT, Aman MG, McDougle CJ, Tierney E, Shiraga S, Whelan F, Arnold LE, Posey D, Ritz L, Vitiello B, et al.: Possible influence of variant of the P-glycoprotein gene (MDR1/ABCB1) on clinical response to guanfacine in children with pervasive developmental disorders and hyperactivity. J Child Adolesc Psychopharmacol 2010, 20(1):1-5.
  • [17]Faraone SV, Mick E: Molecular genetics of attention deficit hyperactivity disorder. Psychiatr Clin North Am 2010, 33(1):159-180.
  • [18]Banaschewski T, Becker K, Scherag S, Franke B, Coghill D: Molecular genetics of attention-deficit/hyperactivity disorder: an overview. Eur Child Adolesc Psychiatry 2010, 19(3):237-257.
  • [19]Smith KM, Bauer L, Fischer M, Barkley R, Navia BA: Identification and characterization of human NR4A2 polymorphisms in attention deficit hyperactivity disorder. Am J Med Genet B Neuropsychiatr Genet 2005, 133B(1):57-63.
  • [20]Neale BM, Medland S, Ripke S, Anney RJ, Asherson P, Buitelaar J, Franke B, Gill M, Kent L, Holmans P, et al.: Case–control genome-wide association study of attention-deficit/hyperactivity disorder. J Am Acad Child Adolesc Psychiatry 2010, 49(9):906-920.
  • [21]Faraone SV, Perlis RH, Doyle AE, Smoller JW, Goralnick JJ, Holmgren MA, Sklar P: Molecular genetics of attention-deficit/hyperactivity disorder. Biol Psychiatry 2005, 57(11):1313-1323.
  • [22]Mitkus SN, Hyde TM, Vakkalanka R, Kolachana B, Weinberger DR, Kleinman JE, Lipska BK: Expression of oligodendrocyte-associated genes in dorsolateral prefrontal cortex of patients with schizophrenia. Schizophr Res 2008, 98(1–3):129-138.
  • [23]Brookes KJ, Chen W, Xu X, Taylor E, Asherson P: Association of fatty acid desaturase genes with attention-deficit/hyperactivity disorder. Biol Psychiatry 2006, 60(10):1053-1061.
  • [24]Luca P, Laurin N, Misener VL, Wigg KG, Anderson B, Cate-Carter T, Tannock R, Humphries T, Lovett MW, Barr CL: Association of the dopamine receptor D1 gene, DRD1, with inattention symptoms in families selected for reading problems. Mol Psychiatry 2007, 12(8):776-785.
  • [25]Kawashima K, Fujii T: The lymphocytic cholinergic system and its contribution to the regulation of immune activity. Life Sci 2003, 74(6):675-696.
  • [26]Leonard BE: The concept of depression as a dysfunction of the immune system. Curr Immunol Rev 2010, 6(3):205-212.
  • [27]Tomasi D, Volkow ND: Abnormal functional connectivity in children with attention-deficit/hyperactivity disorder. Biol Psychiatry 2012, 71(5):443-450.
  • [28]Schweitzer JB, Lee DO, Hanford RB, Tagamets MA, Hoffman JM, Grafton ST, Kilts CD: A positron emission tomography study of methylphenidate in adults with ADHD: alterations in resting blood flow and predicting treatment response. Neuropsychopharmacology 2003, 28(5):967-973.
  • [29]Blum K, Chen AL, Braverman ER, Comings DE, Chen TJ, Arcuri V, Blum SH, Downs BW, Waite RL, Notaro A, et al.: Attention-deficit-hyperactivity disorder and reward deficiency syndrome. Neuropsychiatr Dis Treat 2008, 4(5):893-918.
  • [30]Mazei-Robinson MS, Blakely RD: ADHD and the dopamine transporter: are there reasons to pay attention? Handb Exp Pharmacol 2006, 175:373-415.
  • [31]Vijayraghavan S, Wang M, Birnbaum SG, Williams GV, Arnsten AF: Inverted-U dopamine D1 receptor actions on prefrontal neurons engaged in working memory. Nat Neurosci 2007, 10(3):376-384.
  文献评价指标  
  下载次数:17次 浏览次数:4次