期刊论文详细信息
BMC Genetics
Genetic diversity of the conserved motifs of six bacterial leaf blight resistance genes in a set of rice landraces
Tapas Kumar Ghose2  Manoj Prasad1  Samik Sengupta3  Basabdatta Das2 
[1] National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, 110067 New Delhi, India;Division of Plant Biology, Bose Institute, Main Campus, 93/1 A.P.C. Road, 700009 Kolkata, West Bengal, India;Department of Horticulture, Institute of Agricultural Science, University of Calcutta, 35, Balligunge Circular Road, 700029 Kolkata, West Bengal, India
关键词: Rice;    Indian landraces;    DNA markers;    BLB resistance;    Genetic diversity;   
Others  :  863152
DOI  :  10.1186/1471-2156-15-82
 received in 2014-04-04, accepted in 2014-07-10,  发布年份 2014
PDF
【 摘 要 】

Background

Bacterial leaf blight (BLB) caused by the vascular pathogen Xanthomonas oryzae pv. oryzae (Xoo) is one of the most serious diseases leading to crop failure in rice growing countries. A total of 37 resistance genes against Xoo has been identified in rice. Of these, ten BLB resistance genes have been mapped on rice chromosomes, while 6 have been cloned, sequenced and characterized. Diversity analysis at the resistance gene level of this disease is scanty, and the landraces from West Bengal and North Eastern states of India have received little attention so far. The objective of this study was to assess the genetic diversity at conserved domains of 6 BLB resistance genes in a set of 22 rice accessions including landraces and check genotypes collected from the states of Assam, Nagaland, Mizoram and West Bengal.

Results

In this study 34 pairs of primers were designed from conserved domains of 6 BLB resistance genes; Xa1, xa5, Xa21, Xa21(A1), Xa26 and Xa27. The designed primer pairs were used to generate PCR based polymorphic DNA profiles to detect and elucidate the genetic diversity of the six genes in the 22 diverse rice accessions of known disease phenotype. A total of 140 alleles were identified including 41 rare and 26 null alleles. The average polymorphism information content (PIC) value was 0.56/primer pair. The DNA profiles identified each of the rice landraces unequivocally. The amplified polymorphic DNA bands were used to calculate genetic similarity of the rice landraces in all possible pair combinations. The similarity among the rice accessions ranged from 18% to 89% and the dendrogram produced from the similarity values was divided into 2 major clusters. The conserved domains identified within the sequenced rare alleles include Leucine-Rich Repeat, BED-type zinc finger domain, sugar transferase domain and the domain of the carbohydrate esterase 4 superfamily.

Conclusions

This study revealed high genetic diversity at conserved domains of six BLB resistance genes in a set of 22 rice accessions. The inclusion of more genotypes from remote ecological niches and hotspots holds promise for identification of further genetic diversity at the BLB resistance genes.

【 授权许可】

   
2014 Das et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140725025728741.pdf 462KB PDF download
55KB Image download
【 图 表 】

【 参考文献 】
  • [1]Harlan JR: Crops and Man. Madison, Wisconsin: American Society of Agronomy and Crop Science Society of America; 1975.
  • [2]Hore DK: Rice diversity collection, conservation and management in northeastern India. Genet Resour Crop Evol 2005, 52:1129-1140.
  • [3]Noda T, Kaku H: Growth of Xanthomonas oryzae pv. oryzae in planta and in guttation fluid of rice. Ann Phytopathol Soc Jpn 1999, 65:9-14.
  • [4]Ou SH: Rice diseases. kew, surrey: commonwealth agricultural bureau: family of type III effectors are major virulence determinants in bacterial blight disease of rice. Mol Plant-Microbe Interact 1985, 17:1192-1200.
  • [5]Hammond-Kosack KE, Jones JDG: Plant disease resistance genes. Annu Rev Plant Physiol Plant Mol Biol 1997, 48:575-607.
  • [6]Khan MA, Naeem M, Iqbal M: Breeding approaches for bacterial leaf blight resistance in rice (Oryza sativa L.), current status and future directions. Eur J Plant Pathol 2014, 139:27-37.
  • [7]Petpisit V, Khush GS, Kauffman HE: Inheritance to bacterial blight in rice. Crop Sci 1977, 17:551-554.
  • [8]Singh K, Vikal Y, Singh S, Leung H, Dhaliwal HS, Khush GS: Mapping of bacterial blight resistance gene xa8 using microsatellite markers. Rice Genet Newsl 2002, 19:94-96.
  • [9]Ogawa T, Lin L, Tabien RE, Khush GS: A new recessive gene for resistance to bacterial blight of rice. Rice Genet Newsl 1987, 4:98-100.
  • [10]Khush GS, Angeles ER: A new gene for resistance to race 6 of bacterial blight in rice, Oryza sativa L. Rice Genet Newsl 1999, 16:92-93.
  • [11]Lee KS, Rasabandith S, Angeles ER, Khush GS: Inheritance of resistance to bacterial blight in 21 cultivars of rice. Phytopathology 2003, 93:147-152.
  • [12]Ruan HH, Yan CQ, An DR, Liu RH, Chen JP: Identifying and mapping new gene xa32 (t) for resistance to bacterial blight (Xanthomonas oryzae pv. oryzae, Xoo) from Oryzae meyeriana L. Acta Agricult Boreali-occidentalis Sin 2008, 17:170-174.
  • [13]Ogawa T: Monitoring race distribution and identification of genes for resistance to bacterial leaf blight. In Rice Genetics III, Proceeding of the Third International Rice Genetics Symposium. Edited by Khush GS. Manila, Philippines: International Rice Research Institute, P.O. Box 933; 1996:456-459.
  • [14]Taura S, Ogawa T, Yoshimura A, Ikeda R, Iwata N: Identification of a recessive resistance gene to rice bacterial blight of mutant line XM6, Oryzae sativa L. Jpn J Breed 1992, 42:7-13.
  • [15]Chen S, Huang ZH, Zeng LX, Yang JY, Liu QG, Zhu XY: High resolution mapping and gene prediction of Xanthomonas oryzae pv. oryzae resistance gene Xa7. Mol Breed 2008, 22:433-441.
  • [16]Sakaguchi S: Linkage studies on the resistance to bacterial leaf blight, Xanthomonas oryzae (Uyeda et Ishiyama) Dowson, in rice. Bull Natl Inst Agr Sci Ser 1967, D16:1-18. in Japanese with English summary
  • [17]Garris AJ, McCouch SR, Kresovich S: Population structure and its effect on haplotype diversity and linkage disequilibrium surrounding the xa5 locus of rice (Oryza sativa L.). Genetics 2003, 165:759-769.
  • [18]Song WY, Wang GL, Chen LL, Kim HS, Pi LY, Holsten T, Gardner J, Wang B, Zhai WX, Zhu LH, Fauquet C, Ronald P: A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science 1995, 270:1804-1806.
  • [19]Ronald PC, Albano B, Tabien R, Abenes L, Wu K: Genetic and physical analysis of the rice bacterial blight disease resistance locus, Xa21. Mol Gen Genet 1992, 236:113-120.
  • [20]Yang Z, Sun X, Wang S, Zhang Q: Genetic and physical mapping of a new gene for bacterial blight resistance in rice. Theor Appl Genet 2003, 106:1467-1472.
  • [21]Glaszmann JC, Kilian B, Upadhyaya HD, Varshney RK: Accessing genetic diversity for crop improvement. Curr Opin Plant Biol 2010, 13:1-7.
  • [22]Nordborg M, Weigel D: Next-generation genetics in plants. Nature 2008, 456:11.
  • [23]Frankel OH: Genetic perspective of germplasm conservation. In Genetic Manipulations: Impact on Man and Society. Edited by Arber W, Llimensee K, Peacock WJ, Stralinger P. Cambridge: Cambridge University Press; 1984:161-170.
  • [24]Ullah I, Jamil S, Iqbal MZ, Shaheen HL, Hasni SM, Jabeen S, Mehmood A, Akhter M: Detection of bacterial blight resistance genes in basmati rice landraces. Mol Res 2012, 11(3):1960-1966.
  • [25]Arif M, Jaffar M, Babar M, Munir A, Sheikh MA, Kousar S, Arif A, Zafar Y: Identification of bacterial blight resistance genes Xa4 in Pakistani rice germplasm using PCR. Afr J Biotechnol 2008, 7(5):541-545.
  • [26]Bimolata W, Kumar A, Sundaram RM, Laha GS, Qureshi IA, Reddy GA, Ghazi IA: Analysis of nucleotide diversity among alleles of the major bacterial blight resistance gene Xa27 in cultivars of rice (Oryza sativa) and its wild relatives. Planta 2013, 238(2):293-305.
  • [27]Walbot V: Preparation of DNA from single rice seedling. Rice Genet Newsl 1988, 5:149-151.
  • [28]Das B, Sengupta S, Parida SK, Roy B, Ghosh M, Prasad M, Ghose TK: Genetic diversity and population structure of rice landraces from Eastern and North Eastern States of India. BMC Genet 2013, 14:71.
  • [29]Sambrook J, Fritsch EF, Maniatis T: Molecular cloning: A laboratory manual. 2nd edition. New York: Cold Spring Harbour Laboratory Press; 1989.
  • [30]Callen DF, Thompson AD, Shen Y, Phillips HA, Richards RI, Mulley JC, Sutherland GR: Incidence and origin of “null” alleles in the (AC) n microsatellite markers. Am J HumGenet 1993, 52:922-927.
  • [31]Jain S, Jain RK, McCouch SR: Genetic analysis of Indian aromatic and quality rice (Oryza sativa L.) germplasm using panels of fluorescently-labeled microsatellite markers. Theor Appl Genet 2004, 109:965-977.
  • [32]Anderson PA, Lawrence GJ, Morrish BC, Ayliffe MA, Finnegan EJ, Ellis JG: Inactivation of the Flax rust resistance gene M associated with loss of a repeated unit within the leucine rich repeat coding region. Plant Cell 1997, 9:641-651.
  • [33]Jaccard P: Nouvelle recherches sur la distribution florale. Bulletin de la Socie´te´ Vaudoise des Sciences Naturelles 1908, 44:223-270.
  • [34]Rohlf FJ: NTSYS-pc. Numerical taxonomy and multivariance analysis system version 2.02e. New York, USA: Exeter Software; 1997. http://www.exetersoftware.com/cat/ntsyspc/ntsyspc.html webcite
  • [35]Yap IP, Nelson R: Win Boot: A programm for performing boot strap analysis of binary data to determine the confidence limits of UPGMA-based dendrograms. 1995. [IPRI Discussion Paper series]
  • [36]Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997, 25:3389-3402.
  • [37]Aravind L: The BED finger, a novel DNA-binding domain in chromatin-boundary-element-binding proteins and transposases. Trends Biochem Sci 2000, 25(9):421-423.
  • [38]Hart CM, Cuvier O, Laemmli UK: Evidence for an antagonistic relationship between the boundary element-associated factor BEAF and the transcription factor DREF. Chromosoma 1999, 108(6):375-383.
  • [39]Matsukage A, Hirose F, Yoo MA, Yamaguchi M: The DRE/DREF transcriptional regulatory system: a master key for cell proliferation. Biochim Biophys Acta 2008, 1779:81-89.
  • [40]Hore DK, Sharma BD: Wild Rice genetic resources of North-east India. Indian J. Pl. Genet. Resour 1993b, 6:27-32.
  • [41]Chatterjee SD, Adhikari B, Ghosh A, Ahmed J, Neogi SB, Pandey N: The rice biodiversity in West Bengal. Department of Agriculture, West Bengal: Govt. of West Bengal; 2008:50.
  • [42]Das B, Sengupta S, Ghosh M, Ghose TK: Assessment of diversity amongst a set of aromatic rice genotypes from India. Int J Biodive Conserv 2012, 4(5):206-218.
  • [43]Walsh PS, Fildes NJ, Reynolds R: Sequence analysis and characterization of stutter products at the tetranucleotide repeat locus vWA. Nucleic Acids Res 1996, 24:2807-2812.
  • [44]Zhao K, Tung CW, Eizenga GC, Wright MH, Ali ML, Price AH, Norton GJ, Islam MR, Reynolds A, Mezey J, McClung AM, Bustamante CD, McCouch SR: Genome-wide association mapping reveals a rich genetic architecture of complex traits in Oryza sativa. Nature 2011, 2(467):1-10.
  • [45]Wang J, Hou BK: Glycosyltransferases: key players involved in the modification of plant secondary metabolites. Front Biol China 2009, 4:39-46.
  • [46]Millward-Sadler SJ, Davidson K, Hazlewood GP, Black GW, Gilbert HJ, Clark JH: Novel cellulose-binding domains, NodB homologues and conserved modular architecture in xylanases from the aerobic soil bacteria Pseudomonas fluorescens subsp. cellulosa and Celivibrio mixtus. Biochem J 1995, 312:39-48.
  • [47]Prasad BD, Creissen G, Lamb C, Chattoo BB: Heterologous expression and characterization of recombinant OsCDR1, a rice aspartic proteinase involved in disease resistance. Protein Expr Purif 2010, 72:169-174.
  • [48]McClintock B: The significance of responses of the genome to challenge. Science 1984, 226:792-801.
  • [49]McDonald JF: Transposable elements:-possible catalysts of organismic evolution. Trends Ecol Evol 1995, 10:123-126.
  • [50]Kidwell MG, Lisch D: Transposable elements as sources of variation in animals and plants. Proc Natl Acad Sci U S A 1997, 94:7704-7711.
  • [51]Vicient CM, Jääskeläinen MJ, Kalendar R, Schulman AH: Active retrotransposons are a common feature of grass genomes. Plant Physiol March 2001, 125(3):1283-1292.
  • [52]Matsumoto T, Wu J, Kanamori H, Katayose Y, Fujisawa M, Namiki N, Mizuno H, Yamamoto K, Antonio BA, Baba T, Sakata K, Nagamura Y, Aoki H, Arikawa K, Arita K, Bito T, Chiden Y, Fujitsuka N, Fukunaka R, Hamada M, Harada C, Hayashi A, Hijishita S, Honda M, Hosokawa S, Ichikawa Y, Idonuma A, Iijima M, Ikeda M, Ikeno M, et al.: The map-based sequence of rice genome. Nature 2005, 436:793-800.
  • [53]Wessler SR: Turned on by stress: plant retrotransposons. Curr Biol 1996, 6:959-961.
  • [54]Grandbastien MA: Activation of retrotransposons under stress conditions. Trends Plant Sci 1998, 3:181-187.
  • [55]Pouteau S, Boccara M, Grandbastien MA: Microbial elicitors of plant defense responses activate transcription of a retrotransposon. Plant J 1994, 5:535-542.
  • [56]Mhiri C, Morel JB, Vernhettes S, Casacuberta JM, Lucas H, Grandbastien MA: The promoter of the tobacco Tnt1 retrotransposon is induced by wounding and by abiotic stress. Plant Mol Biol 1997, 33:257-266.
  • [57]Vernhettes S, Grandbastien MA, Casacuberta JM: In vivo characterization of transcriptional regulatory sequences involved in the defence-associated expression of the tobacco retrotransposon Tnt1. Plant Mol Biol 1997, 35:673-679.
  • [58]Leprinc AS, Grandbastien MA, Christian M: Retrotransposons of the Tnt1B family are mobile in Nicotiana plumbaginifolia and can induce alternative splicing of the host gene upon insertion. Plant Mol Biol 2001, 47:533-541.
  • [59]Kuykendall D, Shao J, Trimmer K: A nest of LTR Retrotransposons adjacent the disease resistance-priming gene NPR1 in Beta vulgaris L. U.S. Hybrid H20. Int J Plant Genomics 2009, 576742.
  • [60]Yang GP, Maroof MAS, Xu CG, Zang Q, Baiyashev RM: Comparative analysis of microsatellite DNA polymorphism in landraces and cultivars of rice. Mol Gen Genet 1994, 245:187-194.
  文献评价指标  
  下载次数:9次 浏览次数:21次