BMC Neuroscience | |
mRNA and microRNA analysis reveals modulation of biochemical pathways related to addiction in the ventral tegmental area of methamphetamine self-administering rats | |
B M Kivell3  D Macartney-Coxson2  M C Benton1  P J Bosch3  | |
[1] Genomics Research Centre, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia;Institute of Environmental Science and Research, Wellington, New Zealand;Centre for Biodiscovery, School of Biological Sciences, Victoria University of Wellington, Kelburn Parade, Wellington 6140, New Zealand | |
关键词: microRNA; Self-administration; Methamphetamine; Genetics; Brain; | |
Others : 1220307 DOI : 10.1186/s12868-015-0186-y |
|
received in 2015-02-09, accepted in 2015-07-14, 发布年份 2015 | |
【 摘 要 】
Background
Methamphetamine is a highly addictive central nervous system stimulant with increasing levels of abuse worldwide. Alterations to mRNA and miRNA expression within the mesolimbic system can affect addiction-like behaviors and thus play a role in the development of drug addiction. While many studies have investigated the effects of high-dose methamphetamine, and identified neurotoxic effects, few have looked at the role that persistent changes in gene regulation play following methamphetamine self-administration. Therefore, the aim of this study was to identify RNA changes in the ventral tegmental area following methamphetamine self-administration. We performed microarray analyses on RNA extracted from the ventral tegmental area of Sprague–Dawley rats following methamphetamine self-administration training (2 h/day) and 14 days of abstinence.
Results
We identified 78 miRNA and 150 mRNA transcripts that were differentially expressed (fdr adjusted p < 0.05, absolute log2 fold change >0.5); these included genes not previously associated with addiction (miR-125a-5p, miR-145 and Foxa1), loci encoding receptors related to drug addiction behaviors and genes with previously recognized roles in addiction such as miR-124, miR-181a, DAT and Ret.
Conclusion
This study provides insight into the effects of methamphetamine on RNA expression in a key brain region associated with addiction, highlighting the possibility that persistent changes in the expression of genes with both known and previously unknown roles in addiction occur.
【 授权许可】
2015 Bosch et al.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150722021350531.pdf | 1370KB | download | |
Figure3. | 15KB | Image | download |
Figure2. | 133KB | Image | download |
Figure 1. | 54KB | Image | download |
【 图 表 】
Figure 1.
Figure2.
Figure3.
【 参考文献 】
- [1]United Nations Office on Drugs and Crime (2012) World Drug Report 2012. United Nations Publication
- [2]Krasnova IN, Cadet JL: Methamphetamine toxicity and messengers of death. Brain Res Rev 2009, 60(2):379-407.
- [3]Cadet JL, McCoy MT, Cai NS, Krasnova IN, Ladenheim B, Beauvais G, et al.: Methamphetamine preconditioning alters midbrain transcriptional responses to methamphetamine-induced injury in the rat striatum. PLoS One 2009, 4(11):e7812.
- [4]Quinton MS, Yamamoto BK: Causes and consequences of methamphetamine and MDMA toxicity. AAPS J 2006, 8(2):E337-E347.
- [5]Thomas DM, Francescutti-Verbeem DM, Liu XL, Kuhn DM: Identification of differentially regulated transcripts in mouse striatum following methamphetamine treatment—an oligonucleotide microarray approach. J Neurochem 2004, 88(2):380-393.
- [6]Martin TA, Jayanthi S, McCoy MT, Brannock C, Ladenheim B, Garrett T, et al.: Methamphetamine causes differential alterations in gene expression and patterns of histone acetylation/hypoacetylation in the rat nucleus accumbens. PLoS One 2012, 7(3):e34236.
- [7]Cadet JL, Jayanthi S, McCoy MT, Vawter M, Ladenheim B: Temporal profiling of methamphetamine-induced changes in gene expression in the mouse brain: evidence from cDNA array. Synapse 2001, 41(1):40-48.
- [8]McCoy MT, Jayanthi S, Wulu JA, Beauvais G, Ladenheim B, Martin TA, et al.: Chronic methamphetamine exposure suppresses the striatal expression of members of multiple families of immediate early genes (IEGs) in the rat: normalization by an acute methamphetamine injection. Psychopharmacology 2011, 215(2):353-365.
- [9]Robison AJ, Nestler EJ: Transcriptional and epigenetic mechanisms of addiction. Nat Rev Neurosci 2011, 12(11):623-637.
- [10]Piechota M, Korostynski M, Sikora M, Golda S, Dzbek J, Przewlocki R: Common transcriptional effects in the mouse striatum following chronic treatment with heroin and methamphetamine. Genes Brain Behav 2012, 11(4):404-414.
- [11]Stefanski R, Ladenheim B, Lee SH, Cadet JL, Goldberg SR: Neuroadaptations in the dopaminergic system after active self-administration but not after passive administration of methamphetamine. Eur J Pharmacol 1999, 371(2–3):123-135.
- [12]Schwendt M, Rocha A, See RE, Pacchioni AM, McGinty JF, Kalivas PW: Extended methamphetamine self-administration in rats results in a selective reduction of dopamine transporter levels in the prefrontal cortex and dorsal striatum not accompanied by marked monoaminergic depletion. J Pharmacol Exp Ther 2009, 331(2):555-562.
- [13]Krasnova IN, Chiflikyan M, Justinova Z, McCoy MT, Ladenheim B, Jayanthi S, et al.: CREB phosphorylation regulates striatal transcriptional responses in the self-administration model of methamphetamine addiction in the rat. Neurobiol Dis 2013, 58C:132-143.
- [14]Lominac KD, Sacramento AD, Szumlinski KK, Kippin TE: Distinct neurochemical adaptations within the nucleus accumbens produced by a history of self-administered vs non-contingently administered intravenous methamphetamine. Neuropsychopharmacology 2012, 37(3):707-722.
- [15]Siegel G, Saba R, Schratt G: microRNAs in neurons: manifold regulatory roles at the synapse. Curr Opin Genet Dev 2011, 21(4):491-497.
- [16]Tsang J, Zhu J, van Oudenaarden A: MicroRNA-mediated feedback and feedforward loops are recurrent network motifs in mammals. Mol Cell 2007, 26(5):753-767.
- [17]Saba R, Storchel PH, Aksoy-Aksel A, Kepura F, Lippi G, Plant TD, et al.: Dopamine-regulated microRNA miR-181a controls GluA2 surface expression in hippocampal neurons. Mol Cell Biol 2012, 32(3):619-632.
- [18]Schratt GM, Tuebing F, Nigh EA, Kane CG, Sabatini ME, Kiebler M, et al.: A brain-specific microRNA regulates dendritic spine development. Nature 2006, 439(7074):283-289.
- [19]Chandrasekar V, Dreyer JL: Regulation of MiR-124, Let-7d, and MiR-181a in the accumbens affects the expression, extinction, and reinstatement of cocaine-induced conditioned place preference. Neuropsychopharmacology 2011, 36(6):1149-1164.
- [20]Luscher C, Malenka RC: Drug-evoked synaptic plasticity in addiction: from molecular changes to circuit remodeling. Neuron 2011, 69(4):650-663.
- [21]Kalivas PW, Stewart J: Dopamine transmission in the initiation and expression of drug- and stress-induced sensitization of motor activity. Brain Res Rev 1991, 16(3):223-244.
- [22]Koob GF, Volkow ND: Neurocircuitry of addiction. Neuropsychopharmacology 2010, 35(1):217-238.
- [23]Luo Y, Good CH, Diaz-Ruiz O, Zhang YJ, Hoffman AF, Shan LF, et al.: NMDA receptors on non-dopaminergic neurons in the VTA support cocaine sensitization. PLoS One 2010, 5(8):e12141.
- [24]Brennan KA, Colussi-Mas J, Carati C, Lea RA, Fitzmaurice PS, Schenk S: Methamphetamine self-administration and the effect of contingency on monoamine and metabolite tissue levels in the rat. Brain Res 2010, 1317:137-146.
- [25]Krasnova IN, Justinova Z, Ladenheim B, Jayanthi S, McCoy MT, Barnes C et al (2010) Methamphetamine self-administration is associated with persistent biochemical alterations in striatal and cortical dopaminergic terminals in the rat. PLoS One 5(1). doi:10.1371/journal.pone.0008790
- [26]Sanchis-Segura C, Spanagel R: Behavioural assessment of drug reinforcement and addictive features in rodents: an overview. Addict Biol 2006, 11(1):2-38.
- [27]Backes E, Hemby SE: Discrete cell gene profiling of ventral tegmental dopamine neurons after acute and chronic cocaine self-administration. J Pharmacol Exp Ther 2003, 307(2):450-459.
- [28]Mijatovic J, Airavaara M, Planken A, Auvinen P, Raasmaja A, Piepponen TP, et al.: Constitutive Ret activity in knock-in multiple endocrine neoplasia type B mice induces profound elevation of brain dopamine concentration via enhanced synthesis and increases the number of TH-positive cells in the substantia nigra. J Neurosci 2007, 27(18):4799-4809.
- [29]Fleckenstein AE, Metzger RR, Wilkins DG, Gibb JW, Hanson GR: Rapid and reversible effects of methamphetamine on dopamine transporters. J Pharmacol Exp Ther 1997, 282(2):834-838.
- [30]German CL, Hanson GR, Fleckenstein AE: Amphetamine and methamphetamine reduce striatal dopamine transporter function without concurrent dopamine transporter localization. J Neurochem 2012, 123(2):288-297.
- [31]Kim J, Inoue K, Ishii J, Vanti WB, Voronov SV, Murchison E, et al.: A microRNA feedback circuit in midbrain dopamine neurons. Science 2007, 317(5842):1220-1224.
- [32]Thiriet N, Jayanthi S, McCoy M, Ladenheim B, Cadet JL: Methamphetamine increases expression of the apoptotic c-myc and L-myc genes in the mouse brain. Mol Brain Res 2001, 90(2):202-204.
- [33]Carlezon WA, Thome J, Olson VG, Lane-Ladd SB, Brodkin ES, Hiroi N, et al.: Regulation of cocaine reward by CREB. Science 1998, 282(5397):2272-2275.
- [34]Sakamoto K, Karelina K, Obrietan K: CREB: a multifaceted regulator of neuronal plasticity and protection. J Neurochem 2011, 116(1):1-9.
- [35]Staud F, Cerveny L, Ahmadimoghaddam D, Ceckova M: Multidrug and toxin extrusion proteins (MATE/SLC47); role in pharmacokinetics. Int J Biochem Cell Biol 2013, 45:2007-2011.
- [36]Fuster DG, Alexander RT: Traditional and emerging roles for the SLC9 Na + /H + exchangers. Pflug Arch 2014, 466:61-76.
- [37]Yetnikoff L, Eng C, Benning S, Flores C: Netrin-1 receptor in the ventral tegmental area is required for sensitization to amphetamine. Eur J Neurosci 2010, 31(7):1292-1302.
- [38]Barros M, Dempster EL, Illott N, Chabrawi S, Maior RS, Tomaz C, et al.: Decreased methylation of the NK3 receptor coding gene (TACR3) after cocaine-induced place preference in marmoset monkeys. Addict Biol 2013, 18:452-454.
- [39]Foroud T, Wetherill LF, Kramer J, Tischfield JA, Nurnberger JI, Schuckit MA, et al.: The tachykinin receptor 3 is associated with alcohol and cocaine dependence. Alcohol Clin Exp Res 2008, 32(6):1023-1030.
- [40]Liu L, Zhao-Shea R, McIntosh JM, Tapper AR: Nicotinic acetylcholine receptors containing the a6 subunit contribute to ethanol activation of ventral tegmental area dopaminergic neurons. Biochem Pharmacol 2013, 86(8):1194-1200.
- [41]Kamens HM, Hoft NR, Cox RJ, Miyamoto JH, Ehringer MA: The alpha 6 nicotinic acetylcholine receptor subunit influences ethanol-induced sedation. Alcohol 2012, 46(5):463-471.
- [42]Crespi A, Ferrari I, Lonati P, Disanza A, Fornasari D, Scita G, et al.: LIN7 regulates the filopodium- and neurite-promoting activity of IRSp53. J Cell Sci 2012, 125(19):4543-4554.
- [43]Hollander JA, Im HI, Amelio AL, Kocerha J, Bali P, Lu Q, et al.: Striatal microRNA controls cocaine intake through CREB signalling. Nature 2010, 466(7303):197-202.
- [44]Balaraman S, Winzer-Serhan UH, Miranda RC: Opposing actions of ethanol and nicotine on microRNAs are mediated by nicotinic acetylcholine receptors in fetal cerebral cortical-derived neural progenitor cells. Alcohol Clin Exp Res 2012, 36(10):1669-1677.
- [45]Ang SL: Foxa1 and Foxa2 transcription factors regulate differentiation of midbrain dopaminergic neurons. In Development and engineering of dopamine neurons. Edited by Pasterkamp RJ, Smidt MP, Burbach JPH. Springer Science+Business Media, New York; 2009:58-65.
- [46]Stott SR, Metzakopian E, Lin W, Kaestner KH, Hen R, Ang SL: Foxa1 and foxa2 are required for the maintenance of dopaminergic properties in ventral midbrain neurons at late embryonic stages. J Neurosci 2013, 33(18):8022-8034.
- [47]Schmidt HD, McGinty JF, West AE, Sadri-Vakili G: Epigenetics and psychostimulant addiction. Cold Spring Harb Perspect Med 2013, 3(3):a012047.
- [48]Numachi Y, Shen H, Yoshida S, Fujiyama K, Toda S, Matsuoka H, et al.: Methamphetamine alters expression of DNA methyltransferase 1 mRNA in rat brain. Neurosci Lett 2007, 414(3):213-217.
- [49]Rengaraj D, Lee BR, Lee SI, Seo HW, Han JY: Expression patterns and miRNa regulation of DNA methyltransferases in chicken primordial germ cells. PLoS One 2011, 6(5):e19524.
- [50]Guo X, Liu Q, Wang G, Zhu S, Gao L, Hong W, et al.: microRNA-29b is a novel mediator of Sox2 function in the regulation of somatic cell reprogramming. Cell Res 2013, 23(1):142-156.
- [51]Noh JH, Chang YG, Kim MG, Jung KH, Kim JK, Bae HJ, et al.: MiR-145 functions as a tumor suppressor by directly targeting histone deacetylase 2 in liver cancer. Cancer Lett 2013, 335(2):455-462.
- [52]Winbanks CE, Wang B, Beyer C, Koh P, White L, Kantharidis P, et al.: TGF-beta regulates miR-206 and miR-29 to control myogenic differentiation through regulation of HDAC4. J Biol Chem 2011, 286(16):13805-13814.
- [53]Mercer TR, Qureshi IA, Gokhan S, Dinger ME, Li G, Mattick JS, et al.: Long noncoding RNAs in neuronal-glial fate specification and oligodendrocyte lineage maturation. BMC Neurosci 2010, 11(1):1-15. BioMed Central Full Text
- [54]Kutter C, Watt S, Stefflova K, Wilson MD, Goncalves A, Ponting CP, et al.: Rapid turnover of long noncoding RNAs and the evolution of gene expression. PLoS Genet 2012, 8(7):e1002841.
- [55]Nordahl TE, Salo R, Leamon M: Neuropsychological effects of chronic methamphetamine use on neurotransmitters and cognition: a review. J Neuropsychiatry Clin Neurosci 2003, 15(3):317-325.
- [56]Stefanski R, Justinova Z, Hayashi T, Takebayashi M, Goldberg SR, Su TP: Sigma(1) receptor upregulation after chronic methamphetamine self-administration in rats: a study with yoked controls. Psychopharmacology 2004, 175(1):68-75.
- [57]Paxinos G, Watson C: The rat brain in stereotaxic coordinates. 5th edition. Academic Press, New York; 2005.
- [58]R Development Core Team (2008) A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, ISBN 3-900051-07-0
- [59]Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, et al.: Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 2004, 5:R80. BioMed Central Full Text
- [60]Bengtsson H, Simpson K, Bullard J, Hanson K (2008) aroma.affymetrix: a generic framework in R for analyzing small to very large Affymetrix data sets in bounded memory. Department of Statistics, University of California, Berkeley
- [61]Gautier L, Cope L, Bolstad BM, Irizarry RA: affy—analysis of Affymetrix GeneChip data at the probe level. Bioinformatics 2004, 20(3):307-315.
- [62]Carvalho BS, Irizarry RA: A framework for oligonucleotide microarray preprocessing. Bioinformatics 2010, 26(19):2363-2367.
- [63]Smyth GK: Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 2004, 3:3.
- [64]Wang J, Duncan D, Shi Z, Zhang B: WEB-based GEne SeT AnaLysis toolkit (WebGestalt): update 2013. Nucleic Acids Res 2013, 41:W77-W83.