期刊论文详细信息
BMC Neuroscience
New Olig1 null mice confirm a non-essential role for Olig1 in oligodendrocyte development
Huiliang Li1  William D Richardson1  Paul Andrew1  Nicoletta Kessaris1  Joana Paes de Faria2 
[1]Wolfson Institute for Biomedical Research and Research Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
[2]Present address: Instituto de Biologia Molecular e Celular, Rua do Campo Alegre, 823, 4150-180, Porto, Portugal
关键词: Forebrain;    Spinal cord;    Knockout mice;    Myelin;    Olig2;    Olig1;    Oligodendrocyte;   
Others  :  1122604
DOI  :  10.1186/1471-2202-15-12
 received in 2013-05-14, accepted in 2014-01-07,  发布年份 2014
PDF
【 摘 要 】

Background

Olig1 and Olig2, encoding closely related basic helix-loop-helix transcription factors, were originally identified in screens for glial-specific genes. Olig1 and Olig2 are both expressed in restricted parts of the neuroepithelium of the embryonic spinal cord and telencephalon and subsequently in oligodendrocyte lineage cells throughout life. In the spinal cord, Olig2 plays a crucial role in the development of oligodendrocytes and motor neurons, and both cell types are lost from Olig2 null mutant mice. The role of Olig1 has been more cryptic. It was initially reported that Olig1 null mice (with a Cre-Pgk-Neo cassette at the Olig1 locus) have a mild developmental phenotype characterized by a slight delay in oligodendrocyte differentiation. However, a subsequent study of the same line following removal of Pgk-Neo (leaving Olig1-Cre) found severe disruption of oligodendrocyte production, myelination failure and early postnatal lethality. A plausible explanation was proposed, that the highly expressed Pgk-Neo cassette in the original line might have up-regulated the neighbouring Olig2 gene, compensating for loss of Olig1. However, this was not tested, so the importance of Olig1 for oligodendrocyte development has remained unclear.

Results

We generated two independent lines of Olig1 null mice. Both lines had a mild phenotype featuring slightly delayed oligodendrocyte differentiation and maturation but no long-term effect. In addition, we found that Olig2 transcripts were not up-regulated in our Olig1 null mice.

Conclusions

Our findings support the original conclusion that Olig1 plays a minor and non-essential role in oligodendrocyte development and have implications for the interpretation of studies based on Olig1 deficient mice (and perhaps Olig1-Cre mice) from different sources.

【 授权许可】

   
2014 de Faria et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150214023509149.pdf 1585KB PDF download
Figure 4. 132KB Image download
Figure 3. 129KB Image download
Figure 2. 220KB Image download
Figure 1. 60KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Lu QR, Sun T, Zhu Z, Ma N, Garcia M, Stiles CD, et al.: Common developmental requirement for Olig function indicates a motor neuron/oligodendrocyte connection. Cell 2002, 109:75-86.
  • [2]Takebayashi H, Nabeshima Y, Yoshida S, Chisaka O, Ikenaka K, Nabeshima Y: The basic helix-loop-helix factor olig2 is essential for the development of motoneuron and oligodendrocyte lineages. Curr Biol 2002, 12:1157-1163.
  • [3]Zhou Q, Anderson DJ: The bHLH transcription factors OLIG2 and OLIG1 couple neuronal and glial subtype specification. Cell 2002, 109:61-73.
  • [4]Richardson WD, Kessaris N, Pringle N: Oligodendrocyte wars. Nat Rev Neurosci 2006, 7:11-18.
  • [5]Furusho M, Ono K, Takebayashi H, Masahira N, Kagawa T, Ikeda K, et al.: Involvement of the Olig2 transcription factor in cholinergic neuron development of the basal forebrain. Dev Biol 2006, 293:348-357.
  • [6]Xin M, Yue T, Ma Z, Wu FF, Gow A, Lu QR: Myelinogenesis and axonal recognition by oligodendrocytes in brain are uncoupled in Olig1-null mice. J Neurosci 2005, 25:1354-1365.
  • [7]Arnett HA, Fancy SP, Alberta JA, Zhao C, Plant SR, Kaing S, et al.: bHLH transcription factor Olig1 is required to repair demyelinated lesions in the CNS. Science 2004, 306:2111-2115.
  • [8]Zhao X, He X, Han X, Yu Y, Ye F, Chen Y, et al.: MicroRNA-mediated control of oligodendrocyte differentiation. Neuron 2010, 65:612-626.
  • [9]Dugas JC, Cuellar TL, Scholze A, Ason B, Ibrahim A, Emery B, et al.: Dicer1 and miR-219 are required for normal oligodendrocyte differentiation and myelination. Neuron 2010, 65:597-611.
  • [10]Harada N, Tamai Y, Ishikawa T, Sauer B, Takaku K, Oshima M, et al.: Intestinal polyposis in mice with a dominant stable mutation of the beta-catenin gene. EMBO J 1999, 18:5931-5942.
  • [11]Ye F, Chen Y, Hoang T, Montgomery RL, Zhao XH, Bu H, et al.: HDAC1 and HDAC2 regulate oligodendrocyte differentiation by disrupting the beta-catenin-TCF interaction. Nat Neurosci 2009, 12:829-838.
  • [12]Fancy SP, Baranzini SE, Zhao C, Yuk DI, Irvine KA, Kaing S, et al.: Dysregulation of the Wnt pathway inhibits timely myelination and remyelination in the mammalian CNS. Genes Dev 2009, 23:1571-1585.
  • [13]Li H, de Faria JP, Andrew P, Nitarska J, Richardson WD: Phosphorylation regulates OLIG2 cofactor choice and the motor neuron-oligodendrocyte fate switch. Neuron 2011, 69:918-929.
  • [14]Nagy A, Rossant J, Nagy R, Abramow-Newerly W, Roder JC: Derivation of completely cell culture-derived mice from early-passage embryonic stem cells. Proc Natl Acad Sci USA 1993, 90:8424-8428.
  • [15]Zhou Q, Wang S, Anderson DJ: Identification of a novel family of oligodendrocyte lineage-specific basic helix-loop-helix transcription factors. Neuron 2000, 25:331-343.
  • [16]Fu H, Cai J, Clevers H, Fast E, Gray S, Greenberg R, et al.: A genome-wide screen for spatially restricted expression patterns identifies transcription factors that regulate glial development. J Neurosci 2009, 29:11399-11408.
  • [17]Qi Y, Cai J, Wu Y, Wu R, Lee J, Fu H, et al.: Control of oligodendrocyte differentiation by the Nkx2.2 homeodomain transcription factor. Development 2001, 128:2723-2733.
  • [18]Agostino A, Invernizzi F, Tiveron C, Fagiolari G, Prelle A, Lamantea E, et al.: Constitutive knockout of Surf1 is associated with high embryonic lethality, mitochondrial disease and cytochrome c oxidase deficiency in mice. Hum Mol Genet 2003, 12:399-413.
  • [19]Dell’agnello C, Leo S, Agostino A, Szabadkai G, Tiveron C, Zulian A, et al.: Increased longevity and refractoriness to Ca(2+)-dependent neurodegeneration in Surf1 knockout mice. Hum Mol Genet 2007, 16:431-444.
  • [20]Li J, Chen X, Yang H, Wang S, Guo B, Yu L, et al.: The zinc finger transcription factor 191 is required for early embryonic development and cell proliferation. Exp Cell Res 2006, 312:3990-3998.
  • [21]Howng SY, Avila RL, Emery B, Traka M, Lin W, Watkins T, et al.: ZFP191 is required by oligodendrocytes for CNS myelination. Genes Dev 2010, 24:301-311.
  • [22]Samanta J, Burke GM, McGuire T, Pisarek AJ, Mukhopadhyay A, Mishina Y, et al.: BMPR1a signaling determines numbers of oligodendrocytes and calbindin-expressing interneurons in the cortex. J Neurosci 2007, 27:7397-7407.
  • [23]Dimou L, Schnell L, Montani L, Duncan C, Simonen M, Schneider R, et al.: Nogo-A-deficient mice reveal strain-dependent differences in axonal regeneration. J Neurosci 2006, 26:5591-5603.
  • [24]Li H, Richardson WD: The evolution of Olig genes and their roles in myelination. Neuron Glia Biol 2008, 4:129-135.
  • [25]Li H, He Y, Richardson WD, Casaccia P: Two-tier transcriptional control of oligodendrocyte differentiation. Curr Opin Neurobiol 2009, 19:479-485.
  • [26]Yue T, Xian K, Hurlock E, Xin M, Kernie SG, Parada LF, et al.: A critical role for dorsal progenitors in cortical myelination. J Neurosci 2006, 26:1275-1280.
  • [27]Stolt CC, Rehberg S, Ader M, Lommes P, Riethmacher D, Schachner M, et al.: Terminal differentiation of myelin-forming oligodendrocytes depends on the transcription factor Sox10. Genes Dev 2002, 16:165-170.
  • [28]Emery B, Agalliu D, Cahoy JD, Watkins TA, Dugas JC, Mulinyawe SB, et al.: Myelin gene regulatory factor is a critical transcriptional regulator required for CNS myelination. Cell 2009, 138:172-185.
  • [29]Sugimori M, Nagao M, Parras CM, Nakatani H, Lebel M, Guillemot F, et al.: Ascl1 is required for oligodendrocyte development in the spinal cord. Development 2008, 135:1271-1281.
  • [30]Li H, Lu Y, Smith HK, Richardson WD: Olig1 and Sox10 interact synergistically to drive myelin basic protein transcription in oligodendrocytes. J Neurosci 2007, 27:14375-14382.
  文献评价指标  
  下载次数:36次 浏览次数:8次