期刊论文详细信息
BMC Medical Genomics
miR-10b-5p expression in Huntington’s disease brain relates to age of onset and the extent of striatal involvement
Richard H Myers7  Jean Paul Vonsattel5  Zhiping Weng6  Schahram Akbarian1  Jiang-Fan Chen3  Marcy E MacDonald2  James F Gusella2  Tiffany C Hadzi3  Vinay K Kartha8  Jeanne C Latourelle3  Adam Labadorf8  Andrew G Hoss4 
[1] Friedman Brain Institute, Department of Psychiatry, Mount Sinai School of Medicine, New York, NY, USA;Center for Human Genetic Research, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA;Department of Neurology, Boston University School of Medicine, Boston, MA, USA;Graduate Program in Genetics and Genomics, Boston University School of Medicine, Boston, MA, USA;Department of Pathology and Cell Biology, Columbia University Medical Center and the New York Presbyterian Hospital, New York, NY, USA;Program in Bioinformatics and Integrative Biology, and Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA;Genome Science Institute, Boston University School of Medicine, Boston, MA, USA;Bioinformatics Program, Boston University, Boston, MA, USA
关键词: Neuropathological involvement;    Age at onset;    RNA biology;    miRNA;    microRNA;    miRNA-sequencing;    Striatum;    Prefrontal cortex;    Human;    Huntington’s disease;   
Others  :  1137819
DOI  :  10.1186/s12920-015-0083-3
 received in 2014-10-28, accepted in 2015-02-06,  发布年份 2015
PDF
【 摘 要 】

Background

MicroRNAs (miRNAs) are small non-coding RNAs that recognize sites of complementarity of target messenger RNAs, resulting in transcriptional regulation and translational repression of target genes. In Huntington’s disease (HD), a neurodegenerative disease caused by a trinucleotide repeat expansion, miRNA dyregulation has been reported, which may impact gene expression and modify the progression and severity of HD.

Methods

We performed next-generation miRNA sequence analysis in prefrontal cortex (Brodmann Area 9) from 26 HD, 2 HD gene positive, and 36 control brains. Neuropathological information was available for all HD brains, including age at disease onset, CAG-repeat size, Vonsattel grade, and Hadzi-Vonsattel striatal and cortical scores, a continuous measure of the extent of neurodegeneration. Linear models were performed to examine the relationship of miRNA expression to these clinical features, and messenger RNA targets of associated miRNAs were tested for gene ontology term enrichment.

Results

We identified 75 miRNAs differentially expressed in HD brain (FDR q-value <0.05). Among the HD brains, nine miRNAs were significantly associated with Vonsattel grade of neuropathological involvement and three of these, miR-10b-5p, miR-10b-3p, and miR-302a-3p, significantly related to the Hadzi-Vonsattel striatal score (a continuous measure of striatal involvement) after adjustment for CAG length. Five miRNAs (miR-10b-5p, miR-196a-5p, miR-196b-5p, miR-10b-3p, and miR-106a-5p) were identified as having a significant relationship to CAG length-adjusted age of onset including miR-10b-5p, the mostly strongly over-expressed miRNA in HD cases. Although prefrontal cortex was the source of tissue profiled in these studies, the relationship of miR-10b-5p expression to striatal involvement in the disease was independent of cortical involvement. Correlation of miRNAs to the clinical features clustered by direction of effect and the gene targets of the observed miRNAs showed association to processes relating to nervous system development and transcriptional regulation.

Conclusions

These results demonstrate that miRNA expression in cortical BA9 provides insight into striatal involvement and support a role for these miRNAs, particularly miR-10b-5p, in HD pathogenicity. The miRNAs identified in our studies of postmortem brain tissue may be detectable in peripheral fluids and thus warrant consideration as accessible biomarkers for disease stage, rate of progression, and other important clinical characteristics of HD.

【 授权许可】

   
2015 Hoss et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150318025338412.pdf 2121KB PDF download
Figure 5. 64KB Image download
Figure 4. 42KB Image download
Figure 3. 88KB Image download
Figure 2. 87KB Image download
Figure 1. 30KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]HDCRG: A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes Cell 1993, 72(6):971-83.
  • [2]Myers RH: Huntington’s disease genetics. NeuroRx 2004, 1(2):255-62.
  • [3]Li JL, Hayden MR, Almqvist EW, Brinkman RR, Durr A, Dode C, et al.: A genome scan for modifiers of age at onset in Huntington disease: the HD MAPS study. Am J Hum Genet 2003, 73(3):682-7.
  • [4]Djousse L, Knowlton B, Hayden M, Almqvist EW, Brinkman R, Ross C, et al.: Interaction of normal and expanded CAG repeat sizes influences age at onset of Huntington disease. Am J Med Genet A 2003, 119A(3):279-82.
  • [5]Bartel DP: MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004, 116(2):281-97.
  • [6]Bartel DP: MicroRNAs: target recognition and regulatory functions. Cell 2009, 136(19167326):215-33.
  • [7]Alvarez-Garcia I, Miska EA: MicroRNA functions in animal development and human disease. Development 2005, 132(21):4653-62.
  • [8]Schratt GM, Tuebing F, Nigh EA, Kane CG, Sabatini ME, Kiebler M, et al.: A brain-specific microRNA regulates dendritic spine development. Nature 2006, 439(7074):283-9.
  • [9]Cao X, Yeo G, Muotri AR, Kuwabara T, Gage FH: Noncoding RNAs in the mammalian central nervous system. Annu Rev Neurosci 2006, 29:77-103.
  • [10]Gascon E, Gao FB: Cause or effect: misregulation of microRNA pathways in neurodegeneration. Front Neurosci 2012, 6:48.
  • [11]Junn E, Mouradian MM: MicroRNAs in neurodegenerative diseases and their therapeutic potential. Pharmacol Ther 2012, 133(2):142-50.
  • [12]Gaughwin PM, Ciesla M, Lahiri N, Tabrizi SJ, Brundin P, Bjorkqvist M: Hsa-miR-34b is a plasma-stable microRNA that is elevated in pre-manifest Huntington’s disease. Hum Mol Genet 2011, 20(11):2225-37.
  • [13]Hoss AG, Kartha VK, Dong X, Latourelle JC, Dumitriu A, Hadzi TC, et al.: MicroRNAs located in the Hox gene clusters are implicated in huntington’s disease pathogenesis. PLoS Genet 2014, 10(2):e1004188.
  • [14]Jin J, Cheng Y, Zhang Y, Wood W, Peng Q, Hutchison E, et al.: Interrogation of brain miRNA and mRNA expression profiles reveals a molecular regulatory network that is perturbed by mutant huntingtin. J Neurochem 2012, 123(4):477-90.
  • [15]Johnson R, Zuccato C, Belyaev ND, Guest DJ, Cattaneo E, Buckley NJ: A microRNA-based gene dysregulation pathway in Huntington’s disease. Neurobiol Dis 2008, 29(3):438-45.
  • [16]Jovicic A, Roshan R, Moisoi N, Pradervand S, Moser R, Pillai B, et al.: Comprehensive expression analyses of neural cell-type-specific miRNAs identify new determinants of the specification and maintenance of neuronal phenotypes. J Neurosci 2013, 33(12):5127-37.
  • [17]Kocerha J, Xu Y, Prucha MS, Zhao D, Chan AW: microRNA-128a dysregulation in transgenic Huntington’s disease monkeys. Molecular Brain 2014, 7:46. BioMed Central Full Text
  • [18]Lee ST, Chu K, Im WS, Yoon HJ, Im JY, Park JE, et al.: Altered microRNA regulation in Huntington’s disease models. Exp Neurol 2011, 227(1):172-9.
  • [19]Marti E, Pantano L, Banez-Coronel M, Llorens F, Minones-Moyano E, Porta S, et al.: A myriad of miRNA variants in control and Huntington’s disease brain regions detected by massively parallel sequencing. Nucleic Acids Res 2010, 38(20):7219-35.
  • [20]Packer AN, Xing Y, Harper SQ, Jones L, Davidson BL: The bifunctional microRNA miR-9/miR-9* regulates REST and CoREST and is downregulated in Huntington’s disease. J Neurosci 2008, 28(53):14341-6.
  • [21]Sinha M, Ghose J, Bhattarcharyya NP: Micro RNA −214,-150,-146a and-125b target Huntingtin gene. RNA Biol 2011, 8(6):1005-21.
  • [22]Sinha M, Ghose J, Das E, Bhattarcharyya NP: Altered microRNAs in STHdh (Q111)/Hdh (Q111) cells: miR-146a targets TBP. Biochem Biophys Res Commun 2010, 396(3):742-7.
  • [23]Soldati C, Bithell A, Johnston C, Wong K-Y, Stanton LW, Buckley NJ: Dysregulation of REST-regulated coding and non-coding RNAs in a cellular model of Huntington’s disease. J Neurochem 2013, 124(23145961):418-30.
  • [24]Cheng PH, Li CL, Chang YF, Tsai SJ, Lai YY, Chan AW, Chen CM, Yang SH: miR-196a ameliorates phenotypes of Huntington disease in cell, transgenic mouse, and induced pluripotent stem cell models. Am J Hum Genet 2013, 93(2):306-312.
  • [25]Vonsattel JP, Myers RH, Stevens TJ, Ferrante RJ, Bird ED, Richardson EP Jr: Neuropathological classification of Huntington’s disease. J Neuropathol Exp Neurol 1985, 44(6):559-77.
  • [26]Gutekunst CA, Li SH, Yi H, Mulroy JS, Kuemmerle S, Jones R, et al.: Nuclear and neuropil aggregates in Huntington’s disease: relationship to neuropathology. J Neurosci 1999, 19(7):2522-34.
  • [27]Rosas HD, Salat DH, Lee SY, Zaleta AK, Pappu V, Fischl B, et al.: Cerebral cortex and the clinical expression of Huntington’s disease: complexity and heterogeneity. Brain J Neurol 2008, 131(Pt 4):1057-68.
  • [28]Hadzi TC, Hendricks AE, Latourelle JC, Lunetta KL, Cupples LA, Gillis T, et al.: Assessment of cortical and striatal involvement in 523 Huntington disease brains. Neurology 2012, 79(16):1708-15.
  • [29]Sotrel A, Williams RS, Kaufmann WE, Myers RH: Evidence for neuronal degeneration and dendritic plasticity in cortical pyramidal neurons of Huntington’s disease: a quantitative Golgi study. Neurology 1993, 43(10):2088-96.
  • [30]Bai G, Cheung I, Shulha HP, Coelho JE, Li P, Dong X, Jakovcevski M, Wang Y, Grigorenko A, Jiang Y, et al.: Epigenetic dysregulation of hairy and enhancer of split 4 (HES4) is associated with striatal degeneration in postmortem Huntington brains. Hum Mol Genet 2015, 24(5):1441-1456.
  • [31]Langbehn DR, Hayden MR, Paulsen JS: CAG-repeat length and the age of onset in Huntington disease (HD): a review and validation study of statistical approaches. Am J Med Genet B Neuropsychiatr Genet 2010, 153B(2):397-408.
  • [32]Myers RH, Vonsattel JP, Stevens TJ, Cupples LA, Richardson EP, Martin JB, et al.: Clinical and neuropathologic assessment of severity in Huntington’s disease. Neurology 1988, 38(3):341-7.
  • [33]Lewis BP, Burge CB, Bartel DP: Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 2005, 120(1):15-20.
  • [34]Lagos-Quintana M, Rauhut R, Yalcin A, Meyer J, Lendeckel W, Tuschl T: Identification of tissue-specific microRNAs from mouse. Current Biol CB 2002, 12(9):735-9.
  • [35]Miska EA, Alvarez-Saavedra E, Townsend M, Yoshii A, Sestan N, Rakic P, et al.: Microarray analysis of microRNA expression in the developing mammalian brain. Genome Biol 2004, 5(9):R68. BioMed Central Full Text
  • [36]Vo N, Klein ME, Varlamova O, Keller DM, Yamamoto T, Goodman RH, et al.: A cAMP-response element binding protein-induced microRNA regulates neuronal morphogenesis. Proc Natl Acad Sci U S A 2005, 102(45):16426-31.
  • [37]McGleenon BM, Dynan KB, Passmore AP: Acetylcholinesterase inhibitors in Alzheimer’s disease. Br J Clin Pharmacol 1999, 48(4):471-80.
  • [38]Kozlowska E, Krzyzosiak WJ, Koscianska E: Regulation of huntingtin gene expression by miRNA-137, −214, −148a, and their respective isomiRs. Int J Mol Sci 2013, 14(8):16999-7016.
  • [39]Varendi K, Kumar A, Harma MA, Andressoo JO: miR-1, miR-10b, miR-155, and miR-191 are novel regulators of BDNF. Cellular and molecular life sciences: CMLS 2014
  • [40]Li Y, Yui D, Luikart BW, McKay RM, Li Y, Rubenstein JL, et al.: Conditional ablation of brain-derived neurotrophic factor-TrkB signaling impairs striatal neuron development. Proc Natl Acad Sci U S A 2012, 109(38):15491-6.
  • [41]Zuccato C, Cattaneo E: Role of brain-derived neurotrophic factor in Huntington’s disease. Prog Neurobiol 2007, 81(5–6):294-330.
  • [42]Zuccato C, Ciammola A, Rigamonti D, Leavitt BR, Goffredo D, Conti L, et al.: Loss of huntingtin-mediated BDNF gene transcription in Huntington’s disease. Science 2001, 293(5529):493-8.
  • [43]Meseguer S, Mudduluru G, Escamilla JM, Allgayer H, Barettino D: MicroRNAs-10a and -10b contribute to retinoic acid-induced differentiation of neuroblastoma cells and target the alternative splicing regulatory factor SFRS1 (SF2/ASF). J Biol Chem 2011, 286(21118818):4150-64.
  • [44]Gomez-Tortosa E, MacDonald ME, Friend JC, Taylor SA, Weiler LJ, Cupples LA, et al.: Quantitative neuropathological changes in presymptomatic Huntington’s disease. Ann Neurol 2001, 49(1):29-34.
  • [45]Burgos KL, Javaherian A, Bomprezzi R, Ghaffari L, Rhodes S, Courtright A, et al.: Identification of extracellular miRNA in human cerebrospinal fluid by next-generation sequencing. RNA 2013, 19(5):712-22.
  • [46]Beach TG, Sue LI, Walker DG, Roher AE, Lue L, Vedders L, et al.: The sun health research institute brain donation program: description and experience, 1987–2007. Cell Tissue Bank 2008, 9(3):229-45.
  • [47]Martin M: Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J 2011, 17(1):10-2.
  • [48]Langmead B, Trapnell C, Pop M, Salzberg SL: Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 2009, 10 (19261174).
  • [49]Quinlan AR, Hall IM: BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 2010, 26(6):841-2.
  • [50]Anders S, Huber W: Differential expression analysis for sequence count data. Genome Biol 2010, 11(10):R106. BioMed Central Full Text
  • [51]Love MI, Huber W, Anders S: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome biology 2014, 15(12):550. BioMed Central Full Text
  • [52]Johnson WE, Li C, Rabinovic A: Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics 2007, 8(1):118-27.
  • [53]Leek J, Johnson, WE, Parker, HS, Jaffe, AE, Storey, JD: sva: Surrogate variable analysis. In. R package version 3.10.0.
  • [54]Smyth G: Limma: linear models for microarray data. In Bioinformatics and computational biology solutions using R and bioconductor. Edited by Gentleman R, Carey V, Dudoit S, Irizarry R, Huber W. Springer, New York; 2005:397-420.
  • [55]Soneson C, Delorenzi M: A comparison of methods for differential expression analysis of RNA-seq data. BMC Bioinformatics 2013, 14:91. BioMed Central Full Text
  • [56]Edgar R, Domrachev M, Lash AE: Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 2002, 30(1):207-210.
  • [57]Hothorn T, Bretz F, Westfall P: Simultaneous inference in general parametric models. Biometrical J Biometrische Zeitschrift 2008, 50(3):346-63.
  • [58]Alexa A, Rahnenfuhrer J, Lengauer T: Improved scoring of functional groups from gene expression data by decorrelating GO graph structure. Bioinformatics 2006, 22(13):1600-7.
  • [59]Supek F, Bosnjak M, Skunca N, Smuc T: REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS One 2011, 6(7):e21800.
  文献评价指标  
  下载次数:44次 浏览次数:30次