期刊论文详细信息
BMC Genomics
An update of the goat genome assembly using dense radiation hybrid maps allows detailed analysis of evolutionary rearrangements in Bovidae
Shuhong Zhao4  Wen Wang1  Yang Dong2  Mei Yu4  Jianhua Cao4  James E Womack5  Bertrand Servin6  Xiaoyong Du3 
[1] State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China;Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, People's Republic of China;State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China;Key lab of animal genetics, breeding and reproduction of ministry education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China;Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX 77843, USA;INRA, Laboratoire de Génétique Cellulaire, Castanet-Tolosan, Auzeville-Tolosane 31320, France
关键词: Gene duplication;    Genomic rearrangements;    Radiation hybrid map;    Goat;   
Others  :  1216406
DOI  :  10.1186/1471-2164-15-625
 received in 2013-10-24, accepted in 2014-07-10,  发布年份 2014
PDF
【 摘 要 】

Background

The domestic goat (Capra hircus), an important livestock species, belongs to a clade of Ruminantia, Bovidae, together with cattle, buffalo and sheep. The history of genome evolution and chromosomal rearrangements on a small scale in ruminants remain speculative. Recently completed goat genome sequence was released but is still in a draft stage. The draft sequence used a variety of assembly packages, as well as a radiation hybrid (RH) map of chromosome 1 as part of its validation.

Results

Using an improved RH mapping pipeline, whole-genome dense maps of 45,953 SNP markers were constructed with statistical confidence measures and the saturated maps provided a fine map resolution of approximate 65 kb. Linking RH maps to the goat sequences showed that the assemblies of scaffolds/super-scaffolds were globally accurate. However, we observed certain flaws linked to the process of anchoring chromosome using conserved synteny with cattle. Chromosome assignments, long-range order, and orientation of the scaffolds were reassessed in an updated genome sequence version. We also present new results exploiting the updated goat genome sequence to understand genomic rearrangements and chromosome evolution between mammals during species radiations. The sequence architecture of rearrangement sites between the goat and cattle genomes presented abundant segmental duplication on regions of goat chromosome 9 and 14, as well as new insertions in homologous cattle genome regions. This complex interplay between duplicated sequences and Robertsonian translocations highlights the rearrangement mechanism of centromeric nonallelic homologous recombination (NAHR) in mammals. We observed that species-specific shifts in ANKRD26 gene duplication are coincident with breakpoint reuse in divergent lineages and this gene family may play a role in chromosome stabilization in chromosome evolution.

Conclusions

We generated dense maps of the complete whole goat genome. The chromosomal maps allowed us to anchor and orientate assembled genome scaffolds along the chromosomes, annotate chromosome rearrangements and thereby get a better understanding of the genome evolution of ruminants and other mammals.

【 授权许可】

   
2014 Du et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150630103615696.pdf 2188KB PDF download
Figure 9. 114KB Image download
Figure 8. 72KB Image download
Figure 7. 62KB Image download
Figure 6. 54KB Image download
Figure 5. 41KB Image download
Figure 4. 56KB Image download
Figure 3. 47KB Image download
Figure 2. 95KB Image download
Figure 1. 54KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

【 参考文献 】
  • [1]Hedges SB, Dudley J, Kumar S: TimeTree: a public knowledge-base of divergence times among organisms. Bioinformatics 2006, 22(23):2971-2972.
  • [2]Vaiman D, Schibler L, Bourgeois F, Oustry A, Amigues Y, Cribiu EP: A genetic linkage map of the male goat genome. Genetics 1996, 144(1):279-305.
  • [3]de Leon Ponce FA, Ambady S, Hawkins GA, Kappes SM, Bishop MD, Robl JM, Beattie CW: Development of a bovine X chromosome linkage group and painting probes to assess cattle, sheep, and goat X chromosome segment homologies. Proc Natl Acad Sci U S A 1996, 93(8):3450-3454.
  • [4]Piumi F, Schibler L, Vaiman D, Oustry A, Cribiu EP: Comparative cytogenetic mapping reveals chromosome rearrangements between the X chromosomes of two closely related mammalian species (cattle and goats). Cytogenet Cell Genet 1998, 81(1):36-41.
  • [5]Schibler L, Vaiman D, Oustry A, Giraud-Delville C, Cribiu EP: Comparative gene mapping: a fine-scale survey of chromosome rearrangements between ruminants and humans. Genome Res 1998, 8:901-915.
  • [6]Schibler L, Di Meo GP, Cribiu EP, Iannuzzi L: Molecular cytogenetics and comparative mapping in goats (Capra hircus, 2n = 60). Cytogenet Genome Res 2009, 126(1–2):77-85.
  • [7]Dong Y, Xie M, Jiang Y, Xiao N, Du X, Zhang W, Tosser-Klopp G, Wang J, Yang S, Liang J, Chen W, Chen J, Zeng P, Hou Y, Bian C, Pan S, Li Y, Liu X, Wang W, Servin B, Sayre B, Zhu B, Sweeney D, Moore R, Nie W, Shen Y, Zhao R, Zhang G, Li J, Faraut T, et al.: Sequencing and automated whole-genome optical mapping of the genome of a domestic goat (Capra hircus). Nat Biotechnol 2013, 31(2):135-141.
  • [8]Lewin HA, Larkin DM, Pontius J, O'Brien SJ: Every genome sequence needs a good map. Genome Res 2009, 19(11):1925-1928.
  • [9]Jiang Y, Xie M, Chen W, Talbot R, Maddox JF, Faraut T, Wu C, Muzny DM, Li Y, Zhang W, Stanton JA, Brauning R, Barris WC, Hourlier T, Aken BL, Searle SM, Adelson DL, Bian C, Cam GR, Chen Y, Cheng S, DeSilva U, Dixen K, Dong Y, Fan G, Franklin IR, Fu S, Fuentes-Utrilla P, Guan R, Highland MA, et al.: The sheep genome illuminates biology of the rumen and lipid metabolism. Science 2014, 344(6188):1168-1173.
  • [10]Groenen MA, Archibald AL, Uenishi H, Tuggle CK, Takeuchi Y, Rothschild MF, Rogel-Gaillard C, Park C, Milan D, Megens HJ, Li S, Larkin DM, Kim H, Frantz LA, Caccamo M, Ahn H, Aken BL, Anselmo A, Anthon C, Auvil L, Badaoui B, Beattie CW, Bendixen C, Berman D, Blecha F, Blomberg J, Bolund L, Bosse M, Botti S, Bujie Z, et al.: Analyses of pig genomes provide insight into porcine demography and evolution. Nature 2012, 491(7424):393-398.
  • [11]Hitte C, Madeoy J, Kirkness EF, Priat C, Lorentzen TD, Senger F, Thomas D, Derrien T, Ramirez C, Scott C, Evanno G, Pullar B, Cadieu E, Oza V, Lourgant K, Jaffe DB, Tacher S, Dréano S, Berkova N, André C, Deloukas P, Fraser C, Lindblad-Toh K, Ostrander EA, Galibert F: Facilitating genome navigation: survey sequencing and dense radiation-hybrid gene mapping. Nat Rev Genet 2005, 6:643-648.
  • [12]Faraut T, de Givry S, Chabrier P, Derrien T, Galibert F, Hitte C, Schiex T: A comparative genome approach to marker ordering. Bioinformatics 2007, 23(2):e50-e56.
  • [13]Servin B, Faraut T, Iannuccelli N, Zelenika D, Milan D: High-resolution autosomal radiation hybrid maps of the pig genome and their contribution to the genome sequence assembly. BMC Genomics 2012, 13:585.
  • [14]Servin B, de Givry S, Faraut T: Statistical confidence measures for genome maps: application to the validation of genome assemblies. Bioinformatics 2010, 26(24):3035-3042.
  • [15]Du X, Womack JE, Owens KE, Elliott JS, Sayre B, Bottcher PJ, Milan D, Podesta MG, Zhao S, Malek M: A whole-genome radiation hybrid panel for goat. Small ruminat research 2012, 105:114-116.
  • [16]Amaral ME, Grant JR, Riggs PK, Stafuzza NB, Filho EA, Goldammer T, Weikard R, Brunner RM, Kochan KJ, Greco AJ, Jeong J, Cai Z, Lin G, Prasad A, Kumar S, Saradhi GP, Mathew B, Kumar MA, Miziara MN, Mariani P, Caetano AR, Galvão SR, Tantia MS, Vijh RK, Mishra B, Kumar ST, Pelai VA, Santana AM, Fornitano LC, Jones BC, et al.: A first generation whole genome RH map of the river buffalo with comparison to domestic cattle. BMC Genomics 2008, 9:631.
  • [17]Lunetta KL, Boehnke M, Lange K, Cox DR: Experimental design and error detection for polyploid radiation hybrid mapping. Genome Res 1995, 5(2):151-163.
  • [18]Storey JD, Tibshirani R: Statistical significance for genomewide studies. Proc Natl Acad Sci U S A 2003, 100(16):9440-9445.
  • [19]Stewart EA, McKusick KB, Aggarwal A, Bajorek E, Brady S, Chu A, Fang N, Hadley D, Harris M, Hussain S, Lee R, Maratukulam A, O'Connor K, Perkins S, Piercy M, Qin F, Reif T, Sanders C, She X, Sun WL, Tabar P, Voyticky S, Cowles S, Fan JB, Mader C, Quackenbush J, Myers RM, Cox DR: An STS-based radiation hybrid map of the human genome. Genome Res 1997, 7(5):422-433.
  • [20]Fontanesi L, Martelli PL, Beretti F, Riggio V, Dall'Olio S, Colombo M, Casadio R, Russo V, Portolano B: An initial comparative map of copy number variations in the goat (Capra hircus) genome. BMC Genomics 2010, 11:639.
  • [21]Cribiu EP, Di Berardino D, Di Meo GP, Eggen A, Gallagher DS, Gustavsson I, Hayes H, Iannuzzi L, Popescu CP, Rubes J, Schmutz S, Stranzinger G, Vaiman A, Womack J: International System for Chromosome Nomenclature of Domestic Bovids (ISCNDB 2000). Cytogenet Cell Genet 2001, 92(3–4):283-299.
  • [22]Maddox JF: A presentation of the differences between the sheep and goat genetic maps. Genet Sel Evol 2005, 37(Suppl 1):S1-S10.
  • [23]Buckland RA, Evans HJ: Cytogenetic aspects of phylogeny in the Bovidae. I. G-banding. Cytogenet Cell Genet 1978, 21(1–2):42-63.
  • [24]Samonte RV, Eichler EE: Segmental duplications and the evolution of the primate genome. Nat Rev Genet 2002, 3(1):65-72.
  • [25]Gallagher DS Jr, Womack JE: Chromosome conservation in the Bovidae. J Hered 1992, 83(4):287-298.
  • [26]Iannuzzi L, King WA, Di Berardino D: Chromosome evolution in domestic bovids as revealed by chromosome banding and FISH-mapping techniques. Cytogenet Genome Res 2009, 126(1–2):49-62.
  • [27]Robinson TJ, Ropiquet A: Examination of hemiplasy, homoplasy and phylogenetic discordance in chromosomal evolution of the Bovidae. Syst Biol 2011, 60(4):439-450.
  • [28]Hernandez Fernandez M, Vrba ES: A complete estimate of the phylogenetic relationships in Ruminantia: a dated species-level supertree of the extant ruminants. Biol Rev Camb Philos Soc 2005, 80(2):269-302.
  • [29]Kehrer-Sawatzki H, Cooper DN: Molecular mechanisms of chromosomal rearrangement during primate evolution. Chromosome Res 2008, 16(1):41-56.
  • [30]Ruiz-Herrera A, Castresana J, Robinson TJ: Is mammalian chromosomal evolution driven by regions of genome fragility? Genome Biol 2006, 7(12):R115.
  • [31]Pevzner P, Tesler G: Human and mouse genomic sequences reveal extensive breakpoint reuse in mammalian evolution. Proc Natl Acad Sci U S A 2003, 100(13):7672-7677.
  • [32]Bulazel KV, Ferreri GC, Eldridge MD, O'Neill RJ: Species-specific shifts in centromere sequence composition are coincident with breakpoint reuse in karyotypically divergent lineages. Genome Biol 2007, 8(8):R170.
  • [33]Murphy WJ, Larkin DM, Everts-van der Wind A, Bourque G, Tesler G, Auvil L, Beever JE, Chowdhary BP, Galibert F, Gatzke L, Hitte C, Meyers SN, Milan D, Ostrander EA, Pape G, Parker HG, Raudsepp T, Rogatcheva MB, Schook LB, Skow LC, Welge M, Womack JE, O'brien SJ, Pevzner PA, Lewin HA: Dynamics of mammalian chromosome evolution inferred from multispecies comparative maps. Science 2005, 309(5734):613-617.
  • [34]Han Y, Zhang Z, Liu C, Liu J, Huang S, Jiang J, Jin W: Centromere repositioning in cucurbit species: implication of the genomic impact from centromere activation and inactivation. Proc Natl Acad Sci U S A 2009, 106(35):14937-14941.
  • [35]Ventura M, Antonacci F, Cardone MF, Stanyon R, D'Addabbo P, Cellamare A, Sprague LJ, Eichler EE, Archidiacono N, Rocchi M: Evolutionary formation of new centromeres in macaque. Science 2007, 316(5822):243-246.
  • [36]Wade CM, Giulotto E, Sigurdsson S, Zoli M, Gnerre S, Imsland F, Lear TL, Adelson DL, Bailey E, Bellone RR, Blöcker H, Distl O, Edgar RC, Garber M, Leeb T, Mauceli E, MacLeod JN, Penedo MC, Raison JM, Sharpe T, Vogel J, Andersson L, Antczak DF, Biagi T, Binns MM, Chowdhary BP, Coleman SJ, Della Valle G, Fryc S, Guérin G: Genome sequence, comparative analysis, and population genetics of the domestic horse. Science 2009, 326(5954):865-867.
  • [37]Ferreri GC, Brown JD, Obergfell C, Jue N, Finn CE, O'Neill MJ, O'Neill RJ: Recent amplification of the kangaroo endogenous retrovirus, KERV, limited to the centromere. J Virol 2011, 85(10):4761-4771.
  • [38]Murat F, Xu JH, Tannier E, Abrouk M, Guilhot N, Pont C, Messing J, Salse J: Ancestral grass karyotype reconstruction unravels new mechanisms of genome shuffling as a source of plant evolution. Genome Res 2010, 20(11):1545-1557.
  • [39]Larkin DM, Pape G, Donthu R, Auvil L, Welge M, Lewin HA: Breakpoint regions and homologous synteny blocks in chromosomes have different evolutionary histories. Genome Res 2009, 19(5):770-777.
  • [40]Donthu R, Lewin HA, Larkin DM: SyntenyTracker: a tool for defining homologous synteny blocks using radiation hybrid maps and whole-genome sequence. BMC research notes 2009, 2:148.
  • [41]Hahn Y, Bera TK, Pastan IH, Lee B: Duplication and extensive remodeling shaped POTE family genes encoding proteins containing ankyrin repeat and coiled coil domains. Gene 2006, 366(2):238-245.
  • [42]Bera TK, Zimonjic DB, Popescu NC, Sathyanarayana BK, Kumar V, Lee B, Pastan I: POTE, a highly homologous gene family located on numerous chromosomes and expressed in prostate, ovary, testis, placenta, and prostate cancer. Proc Natl Acad Sci U S A 2002, 99(26):16975-16980.
  • [43]Fungtammasan A, Walsh E, Chiaromonte F, Eckert KA, Makova KD: A genome-wide analysis of common fragile sites: what features determine chromosomal instability in the human genome? Genome Res 2012, 22(6):993-1005.
  • [44]Yeaman S: Genomic rearrangements and the evolution of clusters of locally adaptive loci. Proc Natl Acad Sci U S A 2013, 110(19):E1743-E1751.
  • [45]Matsuoka S, Ballif BA, Smogorzewska A, McDonald ER 3rd, Hurov KE, Luo J, Bakalarski CE, Zhao Z, Solimini N, Lerenthal Y, Shiloh Y, Gygi SP, Elledge SJ: ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science 2007, 316(5828):1160-1166.
  • [46]Stephens AD, Haase J, Vicci L, Taylor RM 2nd, Bloom K: Cohesin, condensin, and the intramolecular centromere loop together generate the mitotic chromatin spring. J Cell Biol 2011, 193(7):1167-1180.
  • [47]Wang Y, Leung FC: Discovery of a long inverted repeat in human POTE genes. Genomics 2009, 94(4):278-283.
  • [48]Ross KA: Evidence for somatic gene conversion and deletion in bipolar disorder, Crohn's disease, coronary artery disease, hypertension, rheumatoid arthritis, type-1 diabetes, and type-2 diabetes. BMC Med 2011, 9:12.
  • [49]Bera TK, Liu XF, Yamada M, Gavrilova O, Mezey E, Tessarollo L, Anver M, Hahn Y, Lee B, Pastan I: A model for obesity and gigantism due to disruption of the Ankrd26 gene. Proc Natl Acad Sci U S A 2008, 105(1):270-275.
  • [50]Helmerhorst FM, Heaton DC, Crossen PE, von dem Borne AE, Engelfriet CP, Natarajan AT: Familial thrombocytopenia associated with platelet autoantibodies and chromosome breakage. Hum Genet 1984, 65(3):252-256.
  • [51]Savoia A, Del Vecchio M, Totaro A, Perrotta S, Amendola G, Moretti A, Zelante L, Iolascon A: An autosomal dominant thrombocytopenia gene maps to chromosomal region 10p. Am J Hum Genet 1999, 65(5):1401-1405.
  • [52]Pippucci T, Savoia A, Perrotta S, Pujol-Moix N, Noris P, Castegnaro G, Pecci A, Gnan C, Punzo F, Marconi C, Gherardi S, Loffredo G, De Rocco D, Scianguetta S, Barozzi S, Magini P, Bozzi V, Dezzani L, Di Stazio M, Ferraro M, Perini G, Seri M, Balduini CL: Mutations in the 5' UTR of ANKRD26, the ankirin repeat domain 26 gene, cause an autosomal-dominant form of inherited thrombocytopenia, THC2. Am J Hum Genet 2011, 88(1):115-120.
  • [53]Noris P, Perrotta S, Seri M, Pecci A, Gnan C, Loffredo G, Pujol-Moix N, Zecca M, Scognamiglio F, De Rocco D, Punzo F, Melazzini F, Scianguetta S, Casale M, Marconi C, Pippucci T, Amendola G, Notarangelo LD, Klersy C, Civaschi E, Balduini CL, Savoia A: Mutations in ANKRD26 are responsible for a frequent form of inherited thrombocytopenia: analysis of 78 patients from 21 families. Blood 2011, 117(24):6673-6680.
  • [54]de Givry S, Bouchez M, Chabrier P, Milan D, Schiex T: CARHTA GENE: multipopulation integrated genetic and radiation hybrid mapping. Bioinformatics 2005, 21(8):1703-1704.
  • [55]Delcher AL, Phillippy A, Carlton J, Salzberg SL: Fast algorithms for large-scale genome alignment and comparison. Nucleic Acids Res 2002, 30(11):2478-2483.
  • [56]Baudet C, Lemaitre C, Dias Z, Gautier C, Tannier E, Sagot MF: Cassis: detection of genomic rearrangement breakpoints. Bioinformatics 2010, 26(15):1897-1898.
  • [57]Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, Chalhoub B, Flavell A, Leroy P, Morgante M, Panaud O, Paux E, SanMiguel P, Schulman AH: A unified classification system for eukaryotic transposable elements. Nat Rev Genet 2007, 8(12):973-982.
  • [58]Bailey JA, Yavor AM, Massa HF, Trask BJ, Eichler EE: Segmental duplications: organization and impact within the current human genome project assembly. Genome Res 2001, 11(6):1005-1017.
  • [59]Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones SJ, Marra MA: Circos: an information aesthetic for comparative genomics. Genome Res 2009, 19(9):1639-1645.
  • [60]Lin CY, Lin FK, Lin CH, Lai LW, Hsu HJ, Chen SH, Hsiung CA: POWER: PhylOgenetic WEb Repeater--an integrated and user-optimized framework for biomolecular phylogenetic analysis. Nucleic Acids Res 2005, 33(Web Server issue):W553-W556.
  文献评价指标  
  下载次数:33次 浏览次数:25次