期刊论文详细信息
BMC Medical Imaging
Whole-heart four-dimensional flow can be acquired with preserved quality without respiratory gating, facilitating clinical use: a head-to-head comparison
Håkan Arheden1  Marcus Carlsson1  Einar Heiberg3  Karin Markenroth Bloch2  Christos Xanthis4  Katarina Steding-Ehrenborg1  Johannes Töger5  Mikael Kanski1 
[1]Department of Clinical Physiology, Lund University, Lund University Hospital, Lund, Sweden
[2]Philips Healthcare, Lund, Sweden
[3]Center for Mathematics, Faculty of Engineering, Lund University, Lund, Sweden
[4]Department of Computer Science and Biomedical informatics, University of Thessaly, Lamia, Greece
[5]Department of Numerical Analysis, Center of Mathematical Sciences, Lund University, Lund, Sweden
关键词: Vortex ring size;    Particle trace;    Kinetic energy;    Respiratory gating;    4D flow;    Cardiac MRI;   
Others  :  1220825
DOI  :  10.1186/s12880-015-0061-4
 received in 2014-11-14, accepted in 2015-05-29,  发布年份 2015
PDF
【 摘 要 】

Background

Respiratory gating is often used in 4D-flow acquisition to reduce motion artifacts. However, gating increases scan time. The aim of this study was to investigate if respiratory gating can be excluded from 4D flow acquisitions without affecting quantitative intracardiac parameters.

Methods

Eight volunteers underwent CMR at 1.5 T with a 5-channel coil (5ch). Imaging included 2D flow measurements and whole-heart 4D flow with and without respiratory gating (Resp(+), Resp(−)). Stroke volume (SV), particle-trace volumes, kinetic energy, and vortex-ring volume were obtained from 4D flow-data. These parameters were compared between 5ch Resp(+) and 5ch Resp(−). In addition, 20 patients with heart failure were scanned using a 32-channel coil (32ch), and particle-trace volumes were compared to planimetric SV. Paired comparisons were performed using Wilcoxon’s test and correlation analysis using Pearson r. Agreement was assessed as bias ± SD.

Results

Stroke volume from 4D flow was lower compared to 2D flow both with and without respiratory gating (5ch Resp(+) 88 ± 18 vs 97 ± 24.0, p = 0.001; 5ch Resp(−) 86 ± 16 vs 97.1 ± 22.7, p < 0.01). There was a good correlation between Resp(+) and Resp(−) for particle-trace derived volumes (R 2  = 0.82, 0.2 ± 9.4 ml), mean kinetic energy (R 2  = 0.86, 0.07 ± 0.21 mJ), peak kinetic energy (R 2  = 0.88, 0.14 ± 0.77 mJ), and vortex-ring volume (R 2  = 0.70, −2.5 ± 9.4 ml). Furthermore, good correlation was found between particle-trace volume and planimetric SV in patients for 32ch Resp(−) (R 2  = 0.62, −4.2 ± 17.6 ml) and in healthy volunteers for 5ch Resp(+) (R 2  = 0.89, −11 ± 7 ml), and 5ch Resp(−) (R 2  = 0.93, −7.5 ± 5.4 ml), Average scan duration for Resp(−) was shorter compared to Resp(+) (27 ± 9 min vs 61 ± 19 min, p < 0.05).

Conclusions

Whole-heart 4D flow can be acquired with preserved quantitative results without respiratory gating, facilitating clinical use.

【 授权许可】

   
2015 Kanski et al.

【 预 览 】
附件列表
Files Size Format View
20150725022448843.pdf 3481KB PDF download
Fig. 11. 25KB Image download
Fig. 10. 25KB Image download
Fig. 9. 63KB Image download
Fig. 8. 95KB Image download
Fig. 7. 57KB Image download
Fig. 6. 23KB Image download
Fig. 5. 86KB Image download
Fig. 4. 24KB Image download
Fig. 3. 81KB Image download
Fig. 2. 31KB Image download
Fig. 1. 100KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

Fig. 7.

Fig. 8.

Fig. 9.

Fig. 10.

Fig. 11.

【 参考文献 】
  • [1]Kim WY, Walker PG, Pedersen EM, Poulsen JK, Oyre S, Houlind K et al.. Left ventricular blood flow patterns in normal subjects: a quantitative analysis by three-dimensional magnetic resonance velocity mapping. J Am Coll Cardiol. 1995; 26:224-38.
  • [2]Kilner PJ, Yang GZ, Wilkes a J, Mohiaddin RH, Firmin DN, Yacoub MH. Asymmetric redirection of flow through the heart. Nature. 2000; 404:759-61.
  • [3]Kozerke S, Hasenkam JM, Pedersen EM, Boesiger P. Visualization of flow patterns distal to aortic valve prostheses in humans using a fast approach for cine 3D velocity mapping. J Magn Reson Imaging. 2001; 13:690-8.
  • [4]Bolger AF, Heiberg E, Karlsson M, Wigström L, Engvall J, Sigfridsson A et al.. Transit of blood flow through the human left ventricle mapped by cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2007; 9:741-7.
  • [5]Eriksson J, Carlhäll CJ, Dyverfeldt P, Engvall J, Bolger AF, Ebbers T. Semi-automatic quantification of 4D left ventricular blood flow. J Cardiovasc Magn Reson. 2010; 12:9. BioMed Central Full Text
  • [6]Töger J, Carlsson M, Söderlind G, Arheden H, Heiberg E. Volume Tracking: A new method for quantitative assessment and visualization of intracardiac blood flow from three-dimensional, time-resolved, three-component magnetic resonance velocity mapping. BMC Med Imaging. 2011; 11:10. BioMed Central Full Text
  • [7]Carlsson M, Töger J, Kanski M, Bloch K, Ståhlberg F, Heiberg E et al.. Quantification and visualization of cardiovascular 4D velocity mapping accelerated with parallel imaging or k-t BLAST: head to head comparison and validation at 1.5 T and 3 T. J Cardiovasc Magn Reson. 2011; 13:55. BioMed Central Full Text
  • [8]Arvidsson PM, Töger J, Heiberg E, Carlsson M, Arheden H. Quantification of left and right atrial kinetic energy using four-dimensional intracardiac magnetic resonance imaging flow measurements. J Appl Physiol. 2013; 114:1472-81.
  • [9]Eriksson J, Dyverfeldt P, Engvall J, Bolger AF, Ebbers T, Carlhäll CJ. Quantification of presystolic blood flow organization and energetics in the human left ventricle. Am J Physiol Heart Circ Physiol. 2011; 300:H2135-41.
  • [10]Fredriksson AG, Zajac J, Eriksson J, Dyverfeldt P, Bolger AF, Ebbers T et al.. 4-D blood flow in the human right ventricle. Am J Physiol Heart Circ Physiol. 2011; 301:H2344-50.
  • [11]Zajac J, Eriksson J, Dyverfeldt P, Bolger AF, Ebbers T, Carlhäll C-J. Turbulent kinetic energy in normal and myopathic left ventricles. J Magn Reson Imaging. 2014; 00:1-9.
  • [12]Töger J, Kanski M, Carlsson M, Kovács SJ, Söderlind G, Arheden H et al.. Vortex Ring Formation in the Left Ventricle of the Heart: Analysis by 4D Flow MRI and Lagrangian Coherent Structures. Ann Biomed Eng. 2012; 40:2652-62.
  • [13]Valverde I, Nordmeyer S, Uribe S, Greil G, Berger F, Kuehne T et al.. Systemic-to-pulmonary collateral flow in patients with palliated univentricular heart physiology: measurement using cardiovascular magnetic resonance 4D velocity acquisition. J Cardiovasc Magn Reson. 2012; 14:25. BioMed Central Full Text
  • [14]Goubergrits L, Riesenkampff E, Yevtushenko P, Schaller J, Kertzscher U, Hennemuth A, et al. MRI-based computational fluid dynamics for diagnosis and treatment prediction: Clinical validation study in patients with coarctation of aorta. J Magn Reson Imaging. 2014;00.
  • [15]Markl M, Chan FP, Alley MT, Wedding KL, Draney MT, Elkins CJ et al.. Time-resolved three-dimensional phase-contrast MRI. J Magn Reson Imaging. 2003; 17:499-506.
  • [16]McConnell MV, Khasgiwala VC, Savord BJ, Chen MH, Chuang ML, Edelman RR et al.. Comparison of respiratory suppression methods and navigator locations for MR coronary angiography. AJR Am J Roentgenol. 1997; 168:1369-1375.
  • [17]Baltes C, Kozerke S, Atkinson D, Boesiger P. Retrospective Respiratory Motion Correction for Navigated Cine Velocity Mapping. J Cardiovasc Magn Reson. 2004; 6:785-92.
  • [18]Yi W, Rossman Phillip J, Grimm Roger C, Riederer Stepen JERL. Navigator-Echo-based Real-Time Respiratory Gating and Triggering for Reduction of Respiration Effects in Three-dimensional Coronary MR Angiography. Radiology. 1996; 198:55-61.
  • [19]Ehman RL, Felmlee JP. Adaptive technique for high-definition MR imaging of moving structures. Radiology. 1989; 173:255-63.
  • [20]Nordmeyer S, Riesenkampff E, Crelier G, Khasheei A, Schnackenburg B, Berger F et al.. Flow-sensitive four-dimensional cine magnetic resonance imaging for offline blood flow quantification in multiple vessels: a validation study. J Magn Reson Imaging. 2010; 32:677-83.
  • [21]Heiberg E, Sjögren J, Ugander M, Carlsson M, Engblom H, Arheden H. Design and validation of Segment–freely available software for cardiovascular image analysis. BMC Med Imaging. 2010; 10:1. BioMed Central Full Text
  • [22]Carlsson M, Heiberg E, Toger J, Arheden H. Quantification of left and right ventricular kinetic energy using four-dimensional intracardiac magnetic resonance imaging flow measurements. Am J Physiol Heart Circ Physiol. 2012; 302:H893-900.
  • [23]Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986; 1:307-10.
  • [24]Giese D, Wong J, Greil GF, Buehrer M, Schaeffter T, Kozerke S. Towards highly accelerated Cartesian time-resolved 3D flow cardiovascular magnetic resonance in the clinical setting. J Cardiovasc Magn Reson. 2014; 16:42. BioMed Central Full Text
  • [25]Brix L, Ringgaard S, Rasmusson A, Sørensen TS, Kim WY. Three dimensional three component whole heart cardiovascular magnetic resonance velocity mapping: comparison of flow measurements from 3D and 2D acquisitions. J Cardiovasc Magn Reson. 2009; 11:3. BioMed Central Full Text
  • [26]Enriquez-Sarano M, Akins CW, Vahanian A. Mitral regurgitation. Lancet. 2009; 373:1382-94.
  • [27]Olcay AB, Pottebaum TS, Krueger PS. Sensitivity of Lagrangian coherent structure identification to flow field resolution and random errors. Chaos. 2010; 20:017506.
  • [28]Eriksson J, Bolger AF, Ebbers T, Carlhäll CJ. Four-dimensional blood flow-specific markers of LV dysfunction in dilated cardiomyopathy. Eur Heart J Cardiovasc Imaging. 2013; 14:417-24.
  • [29]Nilsson A, Bloch KM, Carlsson M, Heiberg E, Ståhlberg F. Variable velocity encoding in a three-dimensional, three-directional phase contrast sequence: Evaluation in phantom and volunteers. J Magn Reson Imaging. 2012; 36:1450-9.
  • [30]Sigfridsson A, Petersson S, Carlhäll C-J, Ebbers T. Four-dimensional flow MRI using spiral acquisition. Magn Reson Med. 2012; 68:1065-73.
  • [31]Brecher GA, Mixter G. Effect of respiratory movements on superior cava flow under normal and abnormal conditions. Am J Physiol. 1953; 172:457-61.
  文献评价指标  
  下载次数:77次 浏览次数:29次