期刊论文详细信息
BMC Psychiatry
Prefrontal dysfunction in pediatric Tourette’s disorder as measured by near-infrared spectroscopy
Toshifumi Kishimoto2  Hideki Negoro1  Shohei Tanaka2  Naoko Kishimoto2  Hiroki Matsuura5  Mitsuhiro Uratani3  Yoko Nakanishi2  Junzo Iida4  Toyosaku Ota2  Kazuhiko Yamamuro2 
[1] Department of Education, Nara University of Education, Nara, Japan;Department of Psychiatry, Nara Medical University School of Medicine, 840 Shijyou-cho, Kashihara, Nara 634-8522, Japan;Department of Psychiatry, Nara Prefectural General Rehabilitation Center, Shiki, Nara, Japan;Faculty of Nursing, Nara Medical University School of Medicine, Kashihara, Nara, Japan;Department of Psychiatry, Tenri Hospital, Tenri, Nara, Japan
关键词: Dorsolateral prefrontal cortex;    Tics;    The Stroop Color-Word Task;    Tourette’s disorder;    Near-infrared spectroscopy;   
Others  :  1178981
DOI  :  10.1186/s12888-015-0472-3
 received in 2014-08-26, accepted in 2015-04-17,  发布年份 2015
PDF
【 摘 要 】

Background

Tourette’s disorder (TD) is a chronic childhood-onset disorder characterized by the presence of multiple motor and vocal tics. Despite strong evidence that the pathophysiology of TD involves structural and functional disturbances of the basal ganglia and cortical frontal areas, in vivo imaging studies have produced conflicting results. Recent developments in near-infrared spectroscopy (NIRS) technology have enabled noninvasive assessment of brain function in people with psychiatric disorders.

Methods

We asked 10 individuals with pediatric TD and 10 healthy controls who were age- and sex- matched to perform the Stroop color-word task during NIRS. We used prefrontal probes and a 24-channel NIRS machine to measure the relative concentrations of oxyhemoglobin (oxy-Hb) every 0.1 s during the task.

Results

We found that oxy-Hb changes in the prefrontal cortex were significantly smaller in the TD group compared with the control group, especially in the left dorsolateral prefrontal cortex.

Conclusions

Our data suggest that individuals with pediatric TD have a reduced prefrontal hemodynamic response as measured by NIRS.

【 授权许可】

   
2015 Yamamuro et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150507023533160.pdf 1554KB PDF download
Figure 3. 35KB Image download
Figure 2. 113KB Image download
Figure 1. 22KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Stokes A, Bawden HN, Camfield PR, Backman JE, Dooley JM: Peer problems in Tourette's disorder. Pediatrics 1991, 87(6):936-942.
  • [2]Singer HS: Tourette's syndrome: from behaviour to biology. Lancet Neurol 2005, 4(3):149-159.
  • [3]Freeman RD, Fast DK, Burd L, Kerbeshian J, Robertson MM, Sandor P: An international perspective on Tourette syndrome: selected findings from 3,500 individuals in 22 countries. Dev Med Child Neurol 2000, 42(7):436-447.
  • [4]Khalifa N, von Knorring AL: Tourette syndrome and other tic disorders in a total population of children: clinical assessment and background. Acta Paediatr 2005, 94(11):1608-1614.
  • [5]Rampello L, Alvano A, Battaglia G, Bruno V, Raffaele R, Nicoletti F: Tic disorders: from pathophysiology to treatment. J Neurol 2006, 253(1):1-15.
  • [6]Roessner V, Plessen KJ, Rothenberger A, Ludolph AG, Rizzo R, Skov L, et al.: European clinical guidelines for Tourette syndrome and other tic disorders. Part II: pharmacological treatment. Eur Child Adolesc Psychiatry 2011, 20(4):173-196.
  • [7]Scahill L, Erenberg G, Berlin CM Jr, Budman C, Coffey BJ, Jankovic J, et al.: Contemporary assessment and pharmacotherapy of Tourette syndrome. NeuroRx : the journal of the American Society for Experimental NeuroTherapeutics 2006, 3(2):192-206.
  • [8]Yamamuro K, Makinodan M, Ota T, Iida J, Kishimoto T: Paliperidone extended release for the treatment of pediatric and adolescent patients with Tourette's disorder. Ann Gen Psychiatry 2014, 13:13. BioMed Central Full Text
  • [9]Mink JW: Neurobiology of basal ganglia circuits in Tourette syndrome: faulty inhibition of unwanted motor patterns? Adv Neurol 2001, 85:113-122.
  • [10]Albin RL, Mink JW: Recent advances in Tourette syndrome research. Trends Neurosci 2006, 29(3):175-182.
  • [11]Kalanithi PS, Zheng W, Kataoka Y, DiFiglia M, Grantz H, Saper CB, et al.: Altered parvalbumin-positive neuron distribution in basal ganglia of individuals with Tourette syndrome. Proc Natl Acad Sci U S A 2005, 102(37):13307-13312.
  • [12]Leckman JF, Vaccarino FM, Kalanithi PS, Rothenberger A: Annotation: Tourette syndrome: a relentless drumbeat–driven by misguided brain oscillations. J Child Psychol Psychiatry 2006, 47(6):537-550.
  • [13]Peterson BS, Thomas P, Kane MJ, Scahill L, Zhang H, Bronen R, et al.: Basal Ganglia volumes in patients with Gilles de la Tourette syndrome. Arch Gen Psychiatry 2003, 60(4):415-424.
  • [14]Peterson BS, Staib L, Scahill L, Zhang H, Anderson C, Leckman JF, et al.: Regional brain and ventricular volumes in Tourette syndrome. Arch Gen Psychiatry 2001, 58(5):427-440.
  • [15]Li XL, Sun JH, Li F, Huang MJ, Li QQ, Wu QZ, et al.: [Microstructural abnormalities of basal ganglia and thalamus in children with first-episode Tourette's syndrome: a diffusion tensor imaging study]. Sichuan da xue xue bao Yi xue ban = Journal of Sichuan University Medical science edition 2010, 41(2):284-287.
  • [16]George MS, Trimble MR, Costa DC, Robertson MM, Ring HA, Ell PJ: Elevated frontal cerebral blood flow in Gilles de la Tourette syndrome: a 99Tcm-HMPAO SPECT study. Psychiatry Res 1992, 45(3):143-151.
  • [17]Klieger PS, Fett KA, Dimitsopulos T, Kurlan R: Asymmetry of basal ganglia perfusion in Tourette's syndrome shown by technetium-99 m-HMPAO SPECT. Journal of nuclear medicine : official publication, Society of Nuclear Medicine 1997, 38(2):188-191.
  • [18]Eidelberg D, Moeller JR, Antonini A, Kazumata K, Dhawan V, Budman C, et al.: The metabolic anatomy of Tourette's syndrome. Neurology 1997, 48(4):927-934.
  • [19]Marsh R, Zhu H, Wang Z, Skudlarski P, Peterson BS: A developmental fMRI study of self-regulatory control in Tourette's syndrome. Am J Psychiatry 2007, 164(6):955-966.
  • [20]Boas DA, Dale AM, Franceschini MA: Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy. Neuroimage 2004, 23(Suppl 1):S275-288.
  • [21]Strangman G, Boas DA, Sutton JP: Non-invasive neuroimaging using near-infrared light. Biol Psychiatry 2002, 52(7):679-693.
  • [22]Obrig H, Villringer A: Beyond the visible–imaging the human brain with light. Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism 2003, 23(1):1-18.
  • [23]Ohmae E, Ouchi Y, Oda M, Suzuki T, Nobesawa S, Kanno T, et al.: Cerebral hemodynamics evaluation by near-infrared time-resolved spectroscopy: correlation with simultaneous positron emission tomography measurements. Neuroimage 2006, 29(3):697-705.
  • [24]Villringer K, Minoshima S, Hock C, Obrig H, Ziegler S, Dirnagl U, et al.: Assessment of local brain activation. A simultaneous PET and near-infrared spectroscopy study. Adv Exp Med Biol 1997, 413:149-153.
  • [25]Matsuo K, Kato T, Taneichi K, Matsumoto A, Ohtani T, Hamamoto T, et al.: Activation of the prefrontal cortex to trauma-related stimuli measured by near-infrared spectroscopy in posttraumatic stress disorder due to terrorism. Psychophysiology 2003, 40(4):492-500.
  • [26]Kameyama M, Fukuda M, Yamagishi Y, Sato T, Uehara T, Ito M, et al.: Frontal lobe function in bipolar disorder: a multichannel near-infrared spectroscopy study. Neuroimage 2006, 29(1):172-184.
  • [27]Suto T, Fukuda M, Ito M, Uehara T, Mikuni M: Multichannel near-infrared spectroscopy in depression and schizophrenia: cognitive brain activation study. Biol Psychiatry 2004, 55(5):501-511.
  • [28]Ota T, Iida J, Sawada M, Suehiro Y, Yamamuro K, Matsuura H, et al.: Reduced prefrontal hemodynamic response in pediatric obsessive-compulsive disorder as measured by near-infrared spectroscopy. Child Psychiatry Hum Dev 2013, 44(2):265-277.
  • [29]Okada K, Ota T, Iida J, Kishimoto N, Kishimoto T: Lower prefrontal activity in adults with obsessive-compulsive disorder as measured by near-infrared spectroscopy. Prog Neuropsychopharmacol Biol Psychiatry 2013, 43:7-13.
  • [30]Negoro H, Sawada M, Iida J, Ota T, Tanaka S, Kishimoto T: Prefrontal dysfunction in attention-deficit/hyperactivity disorder as measured by near-infrared spectroscopy. Child Psychiatry Hum Dev 2010, 41(2):193-203.
  • [31]Kaufman J, Birmaher B, Brent D, Rao U, Flynn C, Moreci P, et al.: Schedule for Affective Disorders and Schizophrenia for School-Age Children-Present and Lifetime Version (K-SADS-PL): initial reliability and validity data. J Am Acad Child Adolesc Psychiatry 1997, 36(7):980-988.
  • [32]Leckman JF, Riddle MA, Hardin MT, Ort SI, Swartz KL, Stevenson J, et al.: The Yale Global Tic Severity Scale: initial testing of a clinician-rated scale of tic severity. J Am Acad Child Adolesc Psychiatry 1989, 28(4):566-573.
  • [33]Golden CJ: A group version of the Stroop Color and Word Test. J Pers Assess 1975, 39(4):386-388.
  • [34]Laird AR, McMillan KM, Lancaster JL, Kochunov P, Turkeltaub PE, Pardo JV, et al.: A comparison of label-based review and ALE meta-analysis in the Stroop task. Hum Brain Mapp 2005, 25(1):6-21.
  • [35]Hoshi Y, Kobayashi N, Tamura M: Interpretation of near-infrared spectroscopy signals: a study with a newly developed perfused rat brain model. Journal of applied physiology (Bethesda, Md : 1985) 2001, 90(5):1657-1662.
  • [36]Schweitzer JB, Faber TL, Grafton ST, Tune LE, Hoffman JM, Kilts CD: Alterations in the functional anatomy of working memory in adult attention deficit hyperactivity disorder. Am J Psychiatry 2000, 157(2):278-280.
  • [37]Hock C, Villringer K, Muller-Spahn F, Wenzel R, Heekeren H, Schuh-Hofer S, et al.: Decrease in parietal cerebral hemoglobin oxygenation during performance of a verbal fluency task in patients with Alzheimer's disease monitored by means of near-infrared spectroscopy (NIRS)–correlation with simultaneous rCBF-PET measurements. Brain Res 1997, 755(2):293-303.
  • [38]Toronov V, Webb A, Choi JH, Wolf M, Michalos A, Gratton E, et al.: Investigation of human brain hemodynamics by simultaneous near-infrared spectroscopy and functional magnetic resonance imaging. Med Phys 2001, 28(4):521-527.
  • [39]Singh AK, Dan I: Exploring the false discovery rate in multichannel NIRS. Neuroimage 2006, 33(2):542-549.
  • [40]Wang Z, Maia TV, Marsh R, Colibazzi T, Gerber A, Peterson BS: The neural circuits that generate tics in Tourette's syndrome. Am J Psychiatry 2011, 168(12):1326-1337.
  • [41]Biswal B, Yetkin FZ, Haughton VM, Hyde JS: Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magnetic resonance in medicine : official journal of the Society of Magnetic Resonance in Medicine / Society of Magnetic Resonance in Medicine 1995, 34(4):537-541.
  • [42]Hollander E, Kim S, Khanna S, Pallanti S: Obsessive-compulsive disorder and obsessive-compulsive spectrum disorders: diagnostic and dimensional issues. CNS Spectr 2007, 12(2 Suppl 3):5-13.
  • [43]Baym CL, Corbett BA, Wright SB, Bunge SA: Neural correlates of tic severity and cognitive control in children with Tourette syndrome. Brain : a journal of neurology 2008, 131(Pt 1):165-179.
  • [44]Chiu NT, Chang YC, Lee BF, Huang CC, Wang ST: Differences in 99mTc-HMPAO brain SPET perfusion imaging between Tourette's syndrome and chronic tic disorder in children. Eur J Nucl Med 2001, 28(2):183-190.
  • [45]Diler RS, Reyhanli M, Toros F, Kibar M, Avci A: Tc-99 m-ECD SPECT brain imaging in children with Tourette's syndrome. Yonsei Med J 2002, 43(4):403-410.
  文献评价指标  
  下载次数:19次 浏览次数:27次