期刊论文详细信息
BMC Complementary and Alternative Medicine
Immunomodulatory activity of polysaccharides isolated from Clerodendrum splendens: Beneficial effects in experimental autoimmune encephalomyelitis
Mark T Quinn5  Mark A Jutila5  Yury S Ovodov1  David W Pascual2  Daria S Khramova1  Ahoua Yapi3  Liliya N Kirpotina5  SangMu Jun2  Igor A Schepetkin5  Koffi Kouakou4 
[1] Institute of Physiology, Komi Science Centre, The Urals Branch of the Russian Academy of Sciences, Syktyvkar, Russia;Department of Infectious Diseases and Pathology, University of Florida, Gainesville, FL 32611, USA;Institut National de la Santé Public, Abidjan, Côte d’Ivoire;Laboratoire d’Endocrinologie et Biologie de la Reproduction, Université de Cocody-Abidjan, Abidjan, Côte d’Ivoire;Department of Immunology and Infectious Diseases, Montana State University, Bozeman, MT 59717, USA
关键词: Immunomodulation;    Cytokine;    Macrophage;    Polysaccharide;    Clerodendrum splendens;   
Others  :  1229431
DOI  :  10.1186/1472-6882-13-149
 received in 2013-02-22, accepted in 2013-06-20,  发布年份 2013
PDF
【 摘 要 】

Background

Extracts of leaves from Clerodendrum have been used for centuries to treat a variety of medicinal problems in tropical Africa. However, little is known about the high-molecular weight active components conferring therapeutic properties to these extracts.

Methods

Polysaccharides from the leaves of Clerodendrum splendens were extracted and fractionated by ion exchange and size-exclusion chromatography. Molecular weight determination, sugar analysis, degree of methyl esterification, and other chemical characterization of the fractions were performed. Immunomodulatory activity of the fractions was evaluated by determining their ability to induce monocyte/macrophage nitric oxide (NO), cytokine production, and mitogen-activated protein kinase (MAPK) phosphorylation. Experimental autoimmune encephalomyelitis (EAE) was induced in C57BL/6 mice, and severity of EAE was monitored in mice treated with intraperitoneal (i.p.) injections of the most active polysaccharide fraction. Lymph nodes (LN) and spleen were harvested, and levels of cytokines in supernatants from LN cells and splenocytes challenged with myelin oligodendrocyte glycoprotein peptide were determined.

Results

Fractions containing type II arabinogalactan had potent immunomodulatory activity. Specifically, the high-molecular weight sub-fraction CSP-AU1 (average of 38.5 kDa) induced NO and cytokine [interleukin (IL)-1α, -1β, -6, -10, tumor necrosis factor (TNF; designated previously as TNF-α), and granulocyte macrophage-colony stimulating factor (GM-CSF)] production by human peripheral blood mononuclear cells (PBMCs) and monocyte/macrophages. CSP-AU1-induced secretion of TNF was prevented by Toll-like receptor 4 (TLR4) antagonist LPS-RS, indicating a role for TLR4 signaling. Treatment with CSP-AU1 also induced phosphorylation of a number of MAPKs in human PBMC and activated AP-1/NF-κB. In vivo treatment of mice with CSP-AU1 and CSP-NU1 resulted in increased serum IL-6, IL-10, TNF, monocyte chemoattractant protein-1 (MCP-1), macrophage inflammatory protein (MIP)-1α/CCL3, and MIP-1β/CCL4. CSP-AU1 treatment of mice with EAE (50 mg/kg, i.p., daily, 13 days) resulted in significantly reduced disease severity in this experimental model of multiple sclerosis. Levels of IL-13, TNF, interferon (IFN)-γ, IL-17, and GM-CSF were also significantly decreased, whereas transforming growth factor (TGF)-β was increased in LN cells from CSP-AU1-treated EAE mice.

Conclusions

Polysaccharide CSP-AU1 is a potent natural innate immunomodulator with a broad spectrum of agonist activity in vitro and immunosupressive properties after chronic administration in vivo.

【 授权许可】

   
2013 Kouakou et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20151030013553644.pdf 1184KB PDF download
Figure 12. 87KB Image download
Figure 6. 22KB Image download
Figure 10. 77KB Image download
Figure 9. 59KB Image download
Figure 8. 79KB Image download
Figure 7. 91KB Image download
Figure 6. 57KB Image download
Figure 5. 42KB Image download
Figure 4. 77KB Image download
Figure 3. 88KB Image download
Figure 2. 69KB Image download
Figure 1. 88KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.

Figure 6.

Figure 12.

【 参考文献 】
  • [1]Venkatesha SH, Rajaiah R, Berman BM, Moudgil KD: Immunomodulation of Autoimmune Arthritis by Herbal CAM. Evid Based Complement Alternat Med 2011, 2011:986797.
  • [2]Huang CF, Lin SS, Liao PH, Young SC, Yang CC: The immunopharmaceutical effects and mechanisms of herb medicine. Cell Mol Immunol 2008, 5(1):23-31.
  • [3]Shrivastava N, Patel T: Clerodendrum and healthcare: an overview. Medicinal Aromatic Plant Sci Biotech 2007, 1:140-150.
  • [4]Irvine FR: Woody Plants of Ghana. 1st edition. London: Oxford University Press; 1961:750-754.
  • [5]Steane DA, Scotland RW, Mabberley DJ, Olmstead RG: Molecular systematics of Clerodendrum (Lamiaceae): its sequences and total evidence. Am J Bot 1999, 86(1):98-107.
  • [6]Okwu DE, Iroabuchi F: Isolation of an antioxidant flavanone diglycoside from the Nigeria medicinal plant Clerodendron splendens, a. Cheval. Int J Chem Sci 2008, 6:631-636.
  • [7]Okwu DE, Iroabuchi F: Phytochemical composition and biological activities of Uvaria chamae and Clerodendoron splendens. E-Journal Chem 2009, 6:553-560.
  • [8]Gbedema SY, Emelia K, Francis A, Kofi A, Eric W: Wound healing properties and kill kinetics of Clerodendron splendens G. Don, a Ghanaian wound healing plant. Pharmacognosy Res 2010, 2(2):63-68.
  • [9]Abouzid SF, Wahba HM, Elshamy A, Cos P, Maes L, Apers S, Pieters L, Shahat AA: Antimicrobial activity of some Clerodendrum species from Egypt. Nat Prod Res 2013, 27(11):1032-1036.
  • [10]el-Deeb KS: The volatile constituents in the absolute of Clerodendron splendens G. Don oil. Bull Fac Pharm Cairo Univ 2003, 41:259-263.
  • [11]Shehata AH, Yousif MF, Soliman GA: Phytochemical and pharmacological investigations of Clerodendron splendens G. Don growing in Egypt. Egypt J Biomed Sci 2001, 7:145-163.
  • [12]Pinto WJ, Nes WR: 24β-Ethylsterols, n-alkanes and n-alkanols of Clerodendron splendens. Phytochem Rev 1985, 24:1095-1097.
  • [13]Yang H, Jiang B, Hou AJ, Lin ZW, Sun HD: Colebroside A, a new diglucoside of fatty acid ester of glycerin from Clerodendrum colebrookianum. J Asian Nat Prod Res 2000, 2(3):177-185.
  • [14]Okwu DE, Uchenna NF: Exotic multifaceted medicinal plants of drugs and pharmaceutical industries. Afr J Biotechnol 2009, 8:7271-7282.
  • [15]Masuko T, Minami A, Iwasaki N, Majima T, Nishimura S, Lee YC: Carbohydrate analysis by a phenol-sulfuric acid method in microplate format. Anal Biochem 2005, 339(1):69-72.
  • [16]Yariv J, Rapport MM, Graf L: The interaction of glycosides and saccharides with antibody to the corresponding phenylazo glycosides. Biochem J 1962, 85:383-388.
  • [17]Singleton VL, Rossi JA: Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Amer J Enol Viticult 1965, 16:144-158.
  • [18]Wood PJ, Siddiqui IR: Determination of methanol and its application to measurement of pectin ester content and pectin methyl esterase activity. Anal Biochem 1971, 39(2):418-428.
  • [19]Jun S, Ochoa-Reparaz J, Zlotkowska D, Hoyt T, Pascual DW: Bystander-mediated stimulation of proteolipid protein-specific regulatory T (Treg) cells confers protection against experimental autoimmune encephalomyelitis (EAE) via TGF-β. J Neuroimmunol 2012, 245(1–2):39-47.
  • [20]Catchpole B, Hamblin AS, Staines NA: Autologous mixed lymphocyte responses in experimentally-induced arthritis of the Lewis rat. Autoimmunity 2002, 35(2):111-117.
  • [21]Brito LA, Singh M: Acceptable levels of endotoxin in vaccine formulations during preclinical research. J Pharm Sci 2011, 100(1):34-37.
  • [22]Schepetkin IA, Quinn MT: Botanical polysaccharides: macrophage immunomodulation and therapeutic potential. Int Immunopharmacol 2006, 6(3):317-333.
  • [23]Xie G, Schepetkin IA, Siemsen DW, Kirpotina LN, Wiley JA, Quinn MT: Fractionation and characterization of biologically-active polysaccharides from Artemisia tripartita. Phytochemistry 2008, 69(6):1359-1371.
  • [24]Xie G, Schepetkin IA, Quinn MT: Immunomodulatory activity of acidic polysaccharides isolated from Tanacetum vulgare L. Int Immunopharmacol 2007, 7(13):1639-1650.
  • [25]Schepetkin IA, Xie G, Kirpotina LN, Klein RA, Jutila MA, Quinn MT: Macrophage immunomodulatory activity of polysaccharides isolated from Opuntia polyacantha. Int Immunopharmacol 2008, 8(10):1455-1466.
  • [26]Kikkert R, de Groot ER, Aarden LA: Cytokine induction by pyrogens: comparison of whole blood, mononuclear cells, and TLR-transfectants. J Immunol Methods 2008, 336(1):45-55.
  • [27]Coats SR, Pham TT, Bainbridge BW, Reife RA, Darveau RP: MD-2 mediates the ability of tetra-acylated and penta-acylated lipopolysaccharides to antagonize Escherichia coli lipopolysaccharide at the TLR4 signaling complex. J Immunol 2005, 175(7):4490-4498.
  • [28]Guha M, Mackman N: LPS induction of gene expression in human monocytes. Cell Signal 2001, 13(2):85-94.
  • [29]Vaknin I, Blinder L, Wang L, Gazit R, Shapira E, Genina O, Pines M, Pikarsky E, Baniyash M: A common pathway mediated through Toll-like receptors leads to T- and natural killer-cell immunosuppression. Blood 2008, 111(3):1437-1447.
  • [30]Wang Z, Li H, Xu H, Yue XL, Cheng XQ, Hou WJ, Zhang YY, Chen DF: Beneficial effect of Bupleurum polysaccharides on autoimmune disease induced by Campylobacter jejuni in BALB/c mice. J Ethnopharmacol 2009, 124(3):481-487.
  • [31]Jiang JB, Qiu JD, Yang LH, He JP, Smith GW, Li HQ: Therapeutic effects of astragalus polysaccharides on inflammation and synovial apoptosis in rats with adjuvant-induced arthritis. Int J Rheum Dis 2010, 13(4):396-405.
  • [32]Hwang I, Ahn G, Park E, Ha D, Song JY, Jee Y: An acidic polysaccharide of Panax ginseng ameliorates experimental autoimmune encephalomyelitis and induces regulatory T cells. Immunol Lett 2011, 138(2):169-178.
  • [33]Jiang YW, Li H, Zhang YY, Li W, Jiang YF, Ou YY, Chen DF: Beneficial effect of Bupleurum polysaccharides on autoimmune-prone MRL-lpr mice. Clin Dev Immunol 2012, 2012:842928.
  • [34]Suszko A, Obminska-Mrukowicz B: Influence of polysaccharide fractions isolated from Caltha palustris L. on the cellular immune response in collagen-induced arthritis (CIA) in mice. A comparison with methotrexate. J Ethnopharmacol 2013, 145(1):109-117.
  • [35]Batoulis H, Addicks K, Kuerten S: Emerging concepts in autoimmune encephalomyelitis beyond the CD4/T(H)1 paradigm. Ann Anat 2010, 192(4):179-193.
  • [36]Schepetkin IA, Faulkner CL, Nelson-Overton LK, Wiley JA, Quinn MT: Macrophage immunomodulatory activity of polysaccharides isolated from Juniperus scopolorum. Int Immunopharmacol 2005, 5(13–14):1783-1799.
  • [37]Popov SV, Golovchenko VV, Ovodova RG, Smirnov VV, Khramova DS, Popova GY, Ovodov YS: Characterisation of the oral adjuvant effect of lemnan, a pectic polysaccharide of Lemna minor L. Vaccine 2006, 24(26):5413-5419.
  • [38]Popov SV, Vinter VG, Patova OA, Markov PA, Nikitina IR, Ovodova RG, Popova GY, Shashkov AS, Ovodov YS: Chemical characterization and anti-inflammatory effect of rauvolfian, a pectic polysaccharide of Rauvolfia callus. Biochemistry (Mosc) 2007, 72(7):778-784.
  • [39]Takeuchi A, Kamiryou Y, Yamada H, Eto M, Shibata K, Haruna K, Naito S, Yoshikai Y: Oral administration of xanthan gum enhances antitumor activity through Toll-like receptor 4. Int Immunopharmacol 2009, 9(13–14):1562-1567.
  • [40]Khramova DS, Popov SV, Golovchenko VV, Vityazev FV, Paderin NM, Ovodov YS: Abrogation of the oral tolerance to ovalbumin in mice by citrus pectin. Nutrition 2009, 25(2):226-232.
  • [41]Ramberg JE, Nelson ED, Sinnott RA: Immunomodulatory dietary polysaccharides: a systematic review of the literature. Nutrition 2010, 9:54. BioMed Central Full Text
  • [42]Smiderle FR, Ruthes AC, Van AJ, Chanput W, Iacomini M, Wichers HJ, Van Griensven LJ: Polysaccharides from Agaricus bisporus and Agaricus brasiliensis show similarities in their structures and their immunomodulatory effects on human monocytic THP-1 cells. BMC Complement Altern Med 2011, 11:58. BioMed Central Full Text
  • [43]Skyberg JA, Rollins MF, Holderness JS, Marlenee NL, Schepetkin IA, Goodyear A, Dow SW, Jutila MA, Pascual DW: Nasal Acai polysaccharides potentiate innate immunity to protect against pulmonary Francisella tularensis and Burkholderia pseudomallei Infections. PLoS Pathog 2012, 8(3):e1002587.
  • [44]Holderness J, Schepetkin IA, Freedman B, Kirpotina LN, Quinn MT, Hedges JF, Jutila MA: Polysaccharides isolated from Acai fruit induce innate immune responses. PLoS One 2011, 6(2):e17301.
  • [45]Renard CM, Baron A, Guyot S, Drilleau JF: Interactions between apple cell walls and native apple polyphenols: quantification and some consequences. Int JBiol Macromol 2001, 29(2):115-125.
  • [46]Yoon YD, Kang JS, Han SB, Park SK, Lee HS, Kang JS, Kim HM: Activation of mitogen-activated protein kinases and AP-1 by polysaccharide isolated from the radix of Platycodon grandiflorum in RAW 264.7 cells. Int Immunopharmacol 2004, 4(12):1477-1487.
  • [47]Salman H, Bergman M, Djaldetti M, Orlin J, Bessler H: Citrus pectin affects cytokine production by human peripheral blood mononuclear cells. Biomed Pharmacother 2008, 62(9):579-582.
  • [48]Ramachandran C, Wilk BJ, Hotchkiss A, Chau H, Eliaz I, Melnick SJ: Activation of human T-helper/inducer cell, T-cytotoxic cell, B-cell, and natural killer (NK)-cells and induction of natural killer cell activity against K562 chronic myeloid leukemia cells with modified citrus pectin. BMC Complement Altern Med 2011, 11:59. BioMed Central Full Text
  • [49]Popov SV, Markov PA, Popova GY, Nikitina IR, Efimova L, Ovodov YS: Anti-inflammatory activity of low and high methoxylated citrus pectins. Biomed Prevent Nutr 2013, 3:59-63.
  • [50]Kouakou K, Schepetkin IA, Yapi A, Kirpotina LN, Jutila MA, Quinn MT: Immunomodulatory activity of polysaccharides isolated from Alchornea cordifolia. J Ethnopharmacol 2013, 146(1):232-242.
  • [51]Schepetkin IA, Kouakou K, Yapi A, Kirpotina LN, Jutila MA, Quinn MT: Immunomodulatory and hemagglutinating activities of acidic polysaccharides isolated from Combretum racemosum. Int Immunopharmacol 2013, 15:628-637.
  • [52]Go H, Hwang HJ, Nam TJ: Polysaccharides from Capsosiphon fulvescens stimulate the growth of IEC-6 Cells by activating the MAPK signaling pathway. Mar Biotechnol 2011, 13(3):433-440.
  • [53]Maeda R, Ida T, Ihara H, Sakamoto T: Immunostimulatory activity of polysaccharides isolated from Caulerpa lentillifera on macrophage cells. Biosci Biotechnol Biochem 2012, 76(3):501-505.
  • [54]Han SB, Yoon YD, Ahn HJ, Lee HS, Lee CW, Yoon WK, Park SK, Kim HM: Toll-like receptor-mediated activation of B cells and macrophages by polysaccharide isolated from cell culture of Acanthopanax senticosus. Int Immunopharmacol 2003, 3(9):1301-1312.
  • [55]Raghu R, Sharma D, Ramakrishnan R, Khanam S, Chintalwar GJ, Sainis KB: Molecular events in the activation of B cells and macrophages by a non-microbial TLR4 agonist, G1-4A from Tinospora cordifolia. Immunol Lett 2009, 123(1):60-71.
  • [56]Liu JY, Yang FL, Lu CP, Yang YL, Wen CL, Hua KF, Wu SH: Polysaccharides from Dioscorea batatas induce tumor necrosis factor-alpha secretion via Toll-like receptor 4-mediated protein kinase signaling pathways. J Agric Food Chem 2008, 56(21):9892-9898.
  • [57]Hsu HY, Jeyashoke N, Yeh CH, Song YJ, Hua KF, Chao LK: Immunostimulatory bioactivity of algal polysaccharides from Chlorella pyrenoidosa activates macrophages via Toll-like receptor 4. J Agric Food Chem 2010, 58(2):927-936.
  • [58]Wang Y, Yan T, Shen J, Guo H, Xiang X: Preventive effect of Ophiopogon japonicus polysaccharides on an autoallergic mouse model for Sjogren’s syndrome by regulating the Th1/Th2 cytokine imbalance. J Ethnopharmacol 2007, 114(2):246-253.
  • [59]Jung ID, Kim HY, Park JW, Lee CM, Noh KT, Kang HK, Heo DR, Lee SJ, Son KH, Park HJ, et al.: RG-II from Panax ginseng C.A. Meyer suppresses asthmatic reaction. BMB Rep 2012, 45(2):79-84.
  • [60]Lim YJ, Na HS, Yun YS, Choi IS, Oh JS, Rhee JH, Cho BH, Lee HC: Suppressive effects of ginsan on the development of allergic reaction in murine asthmatic model. Int Arch Allergy Immunol 2009, 150(1):32-42.
  • [61]Schepetkin IA, Quinn MT: Immunomodulatory effects of botanical polysaccharides. In Polysaccharides in Medicinal and Pharmaceutical Applications. 35th edition. Edited by Popa V. Shawbury, UK: Smithers Rapra; 2011:988-994.
  • [62]Salazar L, Aravena O, Abello P, Escobar A, Contreras-Levicoy J, Rojas-Colonelli N, Catalan D, Aguirre A, Zuniga R, Pesce B, et al.: Modulation of established murine collagen-induced arthritis by a single inoculation of short-term lipopolysaccharide-stimulated dendritic cells. Ann Rheum Dis 2008, 67(9):1235-1241.
  • [63]Petermann F, Korn T: Cytokines and effector T cell subsets causing autoimmune CNS disease. FEBS Lett 2011, 585(23):3747-3757.
  • [64]Codarri L, Gyulveszi G, Tosevski V, Hesske L, Fontana A, Magnenat L, Suter T, Becher B: RORγt drives production of the cytokine GM-CSF in helper T cells, which is essential for the effector phase of autoimmune neuroinflammation. Nat Immunol 2011, 12(6):560-567.
  • [65]Kruglov AA, Lampropoulou V, Fillatreau S, Nedospasov SA: Pathogenic and protective functions of TNF in neuroinflammation are defined by its expression in T lymphocytes and myeloid cells. J Immunol 2011, 187(11):5660-5670.
  文献评价指标  
  下载次数:39次 浏览次数:29次