期刊论文详细信息
BMC Systems Biology
Inferring causal genomic alterations in breast cancer using gene expression data
Jun Zhu2  Eric E Schadt1  Hongyue Dai2  John R Lamb2  Tao Xie2  Chunsheng Zhang2  Zhan Zhang2  Bin Zhang2  Linh M Tran2 
[1] Pacific Biosciences, 1505 Adams Drive, Menlo Park, California 94025, USA;Merck Research Laboratories, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, MA 02115, USA
关键词: oncogenes;    gene regulatory networks;    copy number variation;    breast cancer;   
Others  :  1160447
DOI  :  10.1186/1752-0509-5-121
 received in 2011-03-14, accepted in 2011-08-01,  发布年份 2011
PDF
【 摘 要 】

Background

One of the primary objectives in cancer research is to identify causal genomic alterations, such as somatic copy number variation (CNV) and somatic mutations, during tumor development. Many valuable studies lack genomic data to detect CNV; therefore, methods that are able to infer CNVs from gene expression data would help maximize the value of these studies.

Results

We developed a framework for identifying recurrent regions of CNV and distinguishing the cancer driver genes from the passenger genes in the regions. By inferring CNV regions across many datasets we were able to identify 109 recurrent amplified/deleted CNV regions. Many of these regions are enriched for genes involved in many important processes associated with tumorigenesis and cancer progression. Genes in these recurrent CNV regions were then examined in the context of gene regulatory networks to prioritize putative cancer driver genes. The cancer driver genes uncovered by the framework include not only well-known oncogenes but also a number of novel cancer susceptibility genes validated via siRNA experiments.

Conclusions

To our knowledge, this is the first effort to systematically identify and validate drivers for expression based CNV regions in breast cancer. The framework where the wavelet analysis of copy number alteration based on expression coupled with the gene regulatory network analysis, provides a blueprint for leveraging genomic data to identify key regulatory components and gene targets. This integrative approach can be applied to many other large-scale gene expression studies and other novel types of cancer data such as next-generation sequencing based expression (RNA-Seq) as well as CNV data.

【 授权许可】

   
2011 Tran et al; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150410115155929.pdf 1018KB PDF download
Figure 6. 60KB Image download
Figure 5. 44KB Image download
Figure 4. 78KB Image download
Figure 3. 31KB Image download
Figure 2. 51KB Image download
Figure 1. 34KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Hebbring SJ, Moyer AM, Weinshilboum RM: Sulfotransferase gene copy number variation: pharmacogenetics and function. Cytogenet Genome Res 2008, 123(1-4):205-10.
  • [2]Mullighan CG, Downing JR: Genome-wide profiling of genetic alterations in acute lymphoblastic leukemia: recent insights and future directions. Leukemia 2009.
  • [3]Overdevest JB, Theodorescu D, Lee JK: Utilizing the molecular gateway: the path to personalized cancer management. Clin Chem 2009, 55(4):684-971.
  • [4]Swanton C, Caldas C: Molecular classification of solid tumours: towards pathway-driven therapeutics. Br J Cancer 2009.
  • [5]van 't Veer LJ, et al.: Gene expression profiling predicts clinical outcome of breast cancer. Nature 2002, 415(6871):530-6.
  • [6]Wang Y, et al.: Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet 2005, 365(9460):671-9.
  • [7]Fan C, et al.: Concordance among gene-expression-based predictors for breast cancer. N Engl J Med 2006, 355(6):560-9.
  • [8]Sotiriou C, et al.: Gene expression profiling in breast cancer: understanding the molecular basis of histologic grade to improve prognosis. J Natl Cancer Inst 2006, 98(4):262-72.
  • [9]Andre F, et al.: Molecular characterization of breast cancer with high-resolution oligonucleotide comparative genomic hybridization array. Clin Cancer Res 2009, 15(2):441-51.
  • [10]Haverty PM, et al.: High-resolution genomic and expression analyses of copy number alterations in breast tumors. Genes Chromosomes Cancer 2008, 47(6):530-42.
  • [11]Heidenblad M, et al.: Microarray analyses reveal strong influence of DNA copy number alterations on the transcriptional patterns in pancreatic cancer: implications for the interpretation of genomic amplifications. Oncogene 2005, 24(10):1794-801.
  • [12]Pollack JR, et al.: Microarray analysis reveals a major direct role of DNA copy number alteration in the transcriptional program of human breast tumors. Proc Natl Acad Sci USA 2002, 99(20):12963-8.
  • [13]Hu G, et al.: MTDH activation by 8q22 genomic gain promotes chemoresistance and metastasis of poor-prognosis breast cancer. Cancer Cell 2009, 15(1):9-20.
  • [14]van 't Veer LJ, et al.: Gene expression profiling predicts clinical outcome of breast cancer. Nature 2002, 415(6871):530-6.
  • [15]Miller LD, et al.: An expression signature for p53 status in human breast cancer predicts mutation status, transcriptional effects, and patient survival. Proc Natl Acad Sci USA 2005, 102(38):13550-5.
  • [16]Bergamaschi A, et al.: Distinct patterns of DNA copy number alteration are associated with different clinicopathological features and gene-expression subtypes of breast cancer. Genes Chromosomes Cancer 2006, 45(11):1033-40.
  • [17]Stratton MR, Campbell PJ, Futreal PA: The cancer genome. Nature 2009, 458(7239):719-24.
  • [18]Torkamani A, et al.: Coexpression network analysis of neural tissue reveals perturbations in developmental processes in schizophrenia. Genome Res 2010, 20(4):403-12.
  • [19]Cerami E, et al.: Automated network analysis identifies core pathways in glioblastoma. PLoS ONE 2010, 5(2):e8918.
  • [20]Kulp DC, Jagalur M: Causal inference of regulator-target pairs by gene mapping of expression phenotypes. BMC Genomics 2006, 7:125. BioMed Central Full Text
  • [21]Lum PY, et al.: Elucidating the murine brain transcriptional network in a segregating mouse population to identify core functional modules for obesity and diabetes. J Neurochem 2006, 97(Suppl 1):50-62.
  • [22]Mehrabian M, et al.: Integrating genotypic and expression data in a segregating mouse population to identify 5-lipoxygenase as a susceptibility gene for obesity and bone traits. Nat Genet 2005, 37(11):1224-33.
  • [23]Schadt EE, et al.: An integrative genomics approach to infer causal associations between gene expression and disease. Nat Genet 2005, 37(7):710-7.
  • [24]Zhu J, et al.: An integrative genomics approach to the reconstruction of gene networks in segregating populations. Cytogenet Genome Res 2004, 105(2-4):363-74.
  • [25]Zhu J, et al.: Integrating large-scale functional genomic data to dissect the complexity of yeast regulatory networks. Nat Genet 2008, 40(7):854-61.
  • [26]Zhu J, et al.: Increasing the Power to Detect Causal Associations by Combining Genotypic and Expression Data in Segregating Populations. PLoS Comput Biol 2007, 3(4):e69.
  • [27]Yang X, et al.: Systematic genetic and genomic analysis of cytochrome P450 enzyme activities in human liver. Genome Res 2010.
  • [28]Sharan R, Ulitsky I, Shamir R: Network-based prediction of protein function. Mol Syst Biol 2007, 3:88.
  • [29]Roodi N, et al.: Estrogen receptor gene analysis in estrogen receptor-positive and receptor-negative primary breast cancer. J Natl Cancer Inst 1995, 87(6):446-51.
  • [30]Bartz SR, et al.: Small interfering RNA screens reveal enhanced cisplatin cytotoxicity in tumor cells having both BRCA network and TP53 disruptions. Mol Cell Biol 2006, 26(24):9377-86.
  • [31]Berns K, et al.: A large-scale RNAi screen in human cells identifies new components of the p53 pathway. Nature 2004, 428(6981):431-7.
  • [32]Jackson AL, et al.: Expression profiling reveals off-target gene regulation by RNAi. Nat Biotechnol 2003, 21(6):635-7.
  • [33]Strang GN, Truong : Wavelets and Filter Banks. Wellesley, MA, USA: Wellesley-Cambrage Press; 1996.
  • [34]Boulay PL, et al.: ADP-ribosylation factor 1 controls the activation of the phosphatidylinositol 3-kinase pathway to regulate epidermal growth factor-dependent growth and migration of breast cancer cells. J Biol Chem 2008, 283(52):36425-34.
  • [35]Lu X, et al.: In vivo dynamics and distinct functions of hypoxia in primary tumor growth and organotropic metastasis of breast cancer. Cancer Res 2010, 70(10):3905-14.
  • [36]Nakshatri H, Badve S: FOXA1 in breast cancer. Expert Rev Mol Med 2009, 11:e8.
  • [37]Torkamani A, Schork NJ: Identification of rare cancer driver mutations by network reconstruction. Genome Res 2009, 19(9):1570-8.
  • [38]Macarulla T, Ramos FJ, Tabernero J: Aurora kinase family: a new target for anticancer drug. Recent Pat Anticancer Drug Discov 2008, 3(2):114-22.
  • [39]Mita AC, et al.: Survivin: key regulator of mitosis and apoptosis and novel target for cancer therapeutics. Clin Cancer Res 2008, 14(16):5000-5.
  • [40]Rana S, et al.: Stathmin 1: a novel therapeutic target for anticancer activity. Expert Rev Anticancer Ther 2008, 8(9):1461-70.
  • [41]Peset I, Vernos I: The TACC proteins: TACC-ling microtubule dynamics and centrosome function. Trends Cell Biol 2008, 18(8):379-88.
  • [42]Fridlyand J, et al.: Breast tumor copy number aberration phenotypes and genomic instability. BMC Cancer 2006, 6:96. BioMed Central Full Text
  • [43]Still IH, Vince P, Cowell JK: The third member of the transforming acidic coiled coil-containing gene family, TACC3, maps in 4p16, close to translocation breakpoints in multiple myeloma, and is upregulated in various cancer cell lines. Genomics 1999, 58(2):165-70.
  • [44]Ulisse S, et al.: Transforming acidic coiled-coil 3 and Aurora-A interact in human thyrocytes and their expression is deregulated in thyroid cancer tissues. Endocr Relat Cancer 2007, 14(3):827-37.
  • [45]Kufer TA, et al.: Human TPX2 is required for targeting Aurora-A kinase to the spindle. J Cell Biol 2002, 158(4):617-23.
  • [46]LeRoy PJ, et al.: Localization of human TACC3 to mitotic spindles is mediated by phosphorylation on Ser558 by Aurora A: a novel pharmacodynamic method for measuring Aurora A activity. Cancer Res 2007, 67(11):5362-70.
  • [47]Emilsson V, et al.: Genetics of gene expression and its effect on disease. Nature 2008, 452(7186):423-8.
  • [48]Zhang B, Horvath S: A general framework for weighted gene co-expression network analysis. Stat Appl Genet Mol Biol 2005., 4Article17
  • [49]Xu X, et al.: Quantitative proteomics study of breast cancer cell lines isolated from a single patient: discovery of TIMM17A as a marker for breast cancer. Proteomics 2010, 10(7):1374-90.
  • [50]Li J, et al.: Identification of high-quality cancer prognostic markers and metastasis network modules. Nat Commun 2010, 1:34.
  • [51]Akavia UD, et al.: An integrated approach to uncover drivers of cancer. Cell 2010, 143(6):1005-17.
  • [52]Jornsten R, et al.: Network modeling of the transcriptional effects of copy number aberrations in glioblastoma. Mol Syst Biol 2011, 7:486.
  • [53]Cahan P, et al.: The impact of copy number variation on local gene expression in mouse hematopoietic stem and progenitor cells. Nat Genet 2009, 41(4):430-7.
  • [54]Stranger BE, et al.: Relative impact of nucleotide and copy number variation on gene expression phenotypes. Science 2007, 315(5813):848-53.
  • [55]Hastings PJ, et al.: Mechanisms of change in gene copy number. Nat Rev Genet 2009, 10(8):551-64.
  文献评价指标  
  下载次数:38次 浏览次数:39次