期刊论文详细信息
BMC Evolutionary Biology
Horizontally acquired divergent O-antigen contributes to escape from cross-immunity in the classical bordetellae
Eric T Harvill5  Andrew Preston4  Heather A Feaga2  Laura L Goodfield3  Jihye Park1  Sara E Hester2 
[1] Graduate Program in Bioinformatics and Genomics, The Pennsylvania State University, University Park, PA, USA;Graduate Program in Biochemistry, Microbiology and Molecular Biology, The Pennsylvania State University, University Park, PA, USA;Graduate Program in Immunology and Infectious Disease, The Pennsylvania State University, University Park, PA, USA;Department of Biology and Biochemistry, University of Bath, Bath, UK;Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, W-210 Millennium Science Complex, University Park, PA, 16802, USA
关键词: Bordetella;    Recombination;    GC content;    Selective advantage;    Horizontal gene transfer;    O-antigen;   
Others  :  1085899
DOI  :  10.1186/1471-2148-13-209
 received in 2013-04-22, accepted in 2013-09-13,  发布年份 2013
PDF
【 摘 要 】

Background

Horizontal gene transfer (HGT) allows for rapid spread of genetic material between species, increasing genetic and phenotypic diversity. Although HGT contributes to adaptation and is widespread in many bacteria, others show little HGT. This study builds on previous work to analyze the evolutionary mechanisms contributing to variation within the locus encoding a prominent antigen of the classical bordetellae.

Results

We observed amongst classical bordetellae discrete regions of the lipopolysaccharide O-antigen locus with higher sequence diversity than the genome average. Regions of this locus had less than 50% sequence similarity, low dN/dS ratios and lower GC content compared to the genome average. Additionally, phylogenetic tree topologies based on genome-wide SNPs were incongruent with those based on genes within these variable regions, suggesting portions of the O-antigen locus may have been horizontally transferred. Furthermore, several predicted recombination breakpoints correspond with the ends of these variable regions. To examine the evolutionary forces that might have selected for this rare example of HGT in bordetellae, we compared in vitro and in vivo phenotypes associated with different O-antigen types. Antibodies against O1- and O2-serotypes were poorly cross-reactive, and did not efficiently kill or mediate clearance of alternative O-type bacteria, while a distinct and poorly immunogenic O-antigen offered no protection against colonization.

Conclusions

This study suggests that O-antigen variation was introduced to the classical bordetellae via HGT through recombination. Additionally, genetic variation may be maintained within the O-antigen locus because it can provide escape from immunity to different O-antigen types, potentially allowing for the circulation of different Bordetella strains within the same host population.

【 授权许可】

   
2013 Hester et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150113181357546.pdf 2646KB PDF download
Figure 9. 64KB Image download
Figure 8. 120KB Image download
Figure 7. 129KB Image download
Figure 6. 48KB Image download
Figure 5. 63KB Image download
Figure 4. 56KB Image download
Figure 3. 109KB Image download
Figure 2. 42KB Image download
Figure 1. 58KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

【 参考文献 】
  • [1]Diavatopoulos DA, Cummings CA, Schouls LM, Brinig MM, Relman DA, Mooi FR: Bordetella pertussis, the causative agent of whooping cough, evolved from a distinct, human-associated lineage of B. bronchiseptica. PLoS Pathog 2005, 1:e45.
  • [2]Mattoo S, Cherry JD: Molecular pathogenesis, epidemiology, and clinical manifestations of respiratory infections due to Bordetella pertussis and other Bordetella subspecies. Clin Microbiol Rev 2005, 18:326-382.
  • [3]Goodnow RA: Biology of Bordetella bronchiseptica. Microbiol Rev 1980, 44:722-738.
  • [4]Parkhill J, Sebaihia M, Preston A, Murphy LD, Thomson N, Harris DE, Holden MTG, Churcher CM, Bentley SD, Mungall KL, Cerdeño-Tárraga AM, Temple L, James K, Harris B, Quail MA, Achtman M, Atkin R, Baker S, Basham D, Bason N, Cherevach I, Chillingworth T, Collins M, Cronin A, Davis P, Doggett J, Feltwell T, Goble A, Hamlin N, Hauser H, et al.: Comparative analysis of the genome sequences of Bordetella pertussis, Bordetella parapertussis and Bordetella bronchiseptica. Nat Genet 2003, 35:32-40.
  • [5]Park J, Zhang Y, Buboltz AM, Zhang X, Schuster SC, Ahuja U, Liu M, Miller JF, Sebaihia M, Bentley SD, Parkhill J, Harvill ET: Comparative genomics of the classical Bordetella subspecies: the evolution and exchange of virulence-associated diversity amongst closely related pathogens. BMC Genomics 2012, 13:545. BioMed Central Full Text
  • [6]Lerouge I, Vanderleyden J: O-antigen structural variation: mechanisms and possible roles in animal/plant–microbe interactions. FEMS Microbiol Rev 2002, 26:17-47.
  • [7]Samuel G, Reeves P: Biosynthesis of O-antigens: genes and pathways involved in nucleotide sugar precursor synthesis and O-antigen assembly. Carbohydr Res 2003, 338:2503-2519.
  • [8]Stenutz R, Weintraub A, Widmalm G: The structures of Escherichia coli O-polysaccharide antigens. FEMS Microbiol Rev 2006, 30:382-403.
  • [9]Tuanyok A, Stone JK, Mayo M, Kaestli M, Gruendike J, Georgia S, Warrington S, Mullins T, Allender CJ, Wagner DM, Chantratita N, Peacock SJ, Currie BJ, Keim P: The genetic and molecular basis of O-Antigenic diversity in Burkholderia pseudomallei Lipopolysaccharide. PLoS Negl Trop Dis 2012, 6:e1453.
  • [10]Preston A, Allen AG, Cadisch J, Thomas R, Stevens K, Churcher CM, Badcock KL, Parkhill J, Barrell B, Maskell DJ: Genetic basis for lipopolysaccharide O-antigen biosynthesis in bordetellae. Infect Immun 1999, 67:3763-3767.
  • [11]Preston A, Petersen BO, Duus JØ, Kubler-Kielb J, Ben-Menachem G, Li J, Vinogradov E: Complete structures of Bordetella bronchiseptica and Bordetella parapertussis lipopolysaccharides. J Biol Chem 2006, 281:18135-18144.
  • [12]Geurtsen J, Angevaare E, Janssen M, Hamstra H-J, ten Hove J, de Haan A, Kuipers B, Tommassen J, van der Ley P: A novel secondary acyl chain in the lipopolysaccharide of Bordetella pertussis required for efficient infection of human macrophages. J Biol Chem 2007, 282:37875-37884.
  • [13]Caroff M, Aussel L, Zarrouk H, Martin A, Richards JC, Thérisod H, Perry MB, Karibian D: Structural variability and originality of the Bordetella endotoxins. J Endotoxin Res 2001, 7:63-8.
  • [14]Vinogradov E, King JD, Pathak AK, Harvill ET, Preston A: Antigenic variation among Bordetella: Bordetella bronchiseptica strain MO149 expresses a novel o chain that is poorly immunogenic. J Biol Chem 2010, 285:26869-26877.
  • [15]Vinogradov E, Peppler MS, Perry MB: The structure of the nonreducing terminal groups in the O-specific polysaccharides from two strains of Bordetella bronchiseptica. Eur J Biochem 2000, 267:7230-7237.
  • [16]Kubler-Kielb J, Vinogradov E, Ben-Menachem G, Pozsgay V, Robbins JB, Schneerson R: Saccharide/protein conjugate vaccines for Bordetella species: preparation of saccharide, development of new conjugation procedures, and physico-chemical and immunological characterization of the conjugates. Vaccine 2008, 26:3587-3593.
  • [17]Buboltz AM, Nicholson TL, Karanikas AT, Preston A, Harvill ET: Evidence for horizontal gene transfer of two antigenically distinct O Antigens in Bordetella bronchiseptica. Infect Immun 2009, 77:3249-3257.
  • [18]Scheffler K, Martin DP, Seoighe C: Robust inference of positive selection from recombining coding sequences. Bioinformatics 2006, 22:2493-2499.
  • [19]Bay RA, Bielawski JP: Recombination detection under evolutionary scenarios relevant to functional divergence. J Mol Evol 2011, 73:273-286.
  • [20]Ochman H, Lawrence JG, Groisman EA: Lateral gene transfer and the nature of bacterial innovation. Nature 2000, 405:299-304.
  • [21]Schmidt H, Hensel M: Pathogenicity islands in bacterial pathogenesis. Clin Microbiol Rev 2004, 17:14-56.
  • [22]Lawrence JG: Gene transfer, speciation, and the evolution of bacterial genomes. Curr Opin Microbiol 1999, 2:519-523.
  • [23]Ritter A, Blum G, Emödy L, Kerenyi M, Böck A, Neuhierl B, Rabsch W, Scheutz F, Hacker J: tRNA genes and pathogenicity islands: influence on virulence and metabolic properties of uropathogenic Escherichia coli. Mol Microbiol 1995, 17:109-121.
  • [24]Frost LS, Leplae R, Summers AO, Toussaint A: Mobile genetic elements: the agents of open source evolution. Nat Rev Microbiol 2005, 3:722-732.
  • [25]King JD, Vinogradov E, Preston A, Li J, Maskell DJ: Post-assembly modification of Bordetella bronchiseptica O polysaccharide by a novel periplasmic enzyme encoded by wbmE. J Biol Chem 2009, 284:1474-1483.
  • [26]Bentley S: Sequencing the species pan-genome. Nat Rev Microbiol 2009, 7:258-259.
  • [27]Medini D, Donati C, Tettelin H, Masignani V, Rappuoli R: The microbial pan-genome. Curr Opin Genet Dev 2005, 15:589-594.
  • [28]Collins FM, Mackaness GB, Blanden RV: Infection-immunity in experimental salmonellosis. J Exp Med 1966, 124:601-619.
  • [29]Lindberg AA, Segall T, Weintraub A, Stocker BA: Antibody response and protection against challenge in mice vaccinated intraperitoneally with a live aroA O4-O9 hybrid Salmonella dublin strain. Infect Immun 1993, 61:1211-1221.
  • [30]Scheutz F, Cheasty T, Woodward D, Smith HR: Designation of O174 and O175 to temporary O groups OX3 and OX7, and six new E. coli O groups that include Verocytotoxin-producing E. coli (VTEC): O176, O177, O178, O179, O180 and O181. APMIS 2004, 112:569-584.
  • [31]Gog JR, Grenfell BT: Dynamics and selection of many-strain pathogens. Proc Natl Acad Sci USA 2002, 99:17209-17214.
  • [32]Restif O, Grenfell BT: Integrating life history and cross-immunity into the evolutionary dynamics of pathogens. Proc Biol Sci 2006, 273:409-416.
  • [33]Bjørnstad ON, Harvill ET: Evolution and emergence of Bordetella in humans. Trends Microbiol 2005, 13:355-359.
  • [34]Reeves P: Role of O-antigen variation in the immune response. Trends Microbiol 1995, 3:381-386.
  • [35]Seed KD, Faruque SM, Mekalanos JJ, Calderwood SB, Qadri F, Camilli A: Phase variable O antigen biosynthetic genes control expression of the major protective antigen and bacteriophage receptor in Vibrio cholerae O1. PLoS Pathog 2012, 8:e1002917.
  • [36]Stainer DW, Scholte MJ: A simple chemically defined medium for the production of phase I Bordetella pertussis. J Gen Microbiol 1970, 63:211-220.
  • [37]Imaizumi A, Suzuki Y, Ono S, Sato H, Sato Y: Heptakis(2,6-O-dimethyl)beta-cyclodextrin: a novel growth stimulant for Bordetella pertussis phase I. J Clin Microbiol 1983, 17:781-786.
  • [38]Westphal O, Jann K: Bacterial lipopolysaccharides. Extraction with phenol water and further applications of the procedure. New York: Academic Press; 1965:83-91.
  • [39]Wolfe DN, Kirimanjeswara GS, Goebel EM, Harvill ET: Comparative role of immunoglobulin A in protective immunity against the Bordetellae. Infect Immun 2007, 75:4416-4422.
  • [40]Zhang X, Goebel EM, Rodríguez ME, Preston A, Harvill ET: The O antigen is a critical antigen for the development of a protective immune response to Bordetella parapertussis. Infect Immun 2009, 77:5050-5058.
  • [41]Kirimanjeswara GS, Mann PB, Harvill ET: Role of antibodies in immunity to Bordetella infections. Infect Immun 2003, 71:1719-1724.
  • [42]Ovcharenko I, Loots GG, Hardison RC, Miller W, Stubbs L: zPicture: dynamic alignment and visualization tool for analyzing conservation profiles. Genome Res 2004, 14:472-477.
  • [43]R Development Core Team: R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Cmputing; 2008.
  • [44]Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S: MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011, 28:2731-9.
  • [45]Yang Z: PAML 4: Phylogenetic analysis by maximum likelihood. Mol Biol Evol 2007, 24:1586-1591.
  • [46]Nei M, Gojobori T: Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol 1986, 3:418-426.
  • [47]Ning Z, Cox AJ, Mullikin JC: SSAHA: a fast search method for large DNA databases. Genome Res 2001, 11:1725-1729.
  • [48]Martin DP, Lemey P, Lott M, Moulton V, Posada D, Lefeuvre P: RDP3: a flexible and fast computer program for analyzing recombination. Bioinformatics 2010, 26:2462-2463.
  • [49]Pond SLK, Posada D, Gravenor MB, Woelk CH, Frost SDW: GARD: a genetic algorithm for recombination detection. Bioinformatics 2006, 22:3096-3098.
  • [50]Goebel EM, Wolfe DN, Elder K, Stibitz S, Harvill ET: O antigen protects Bordetella parapertussis from complement. Infect Immun 2008, 76:1774-1780.
  文献评价指标  
  下载次数:36次 浏览次数:12次