期刊论文详细信息
BMC Systems Biology
Systems biology approach to stage-wise characterization of epigenetic genes in lung adenocarcinoma
Mathew J Palakal1  Akshay Desai1  Meeta P Pradhan1 
[1] School of Informatics and Computing, Indiana University Purdue University Indianapolis, Indianapolis IN, USA
关键词: SCLC;    NSCLC;    Subnetwork;    TFs;    LUAD;    Stages;    Epigenetic genes;   
Others  :  1141559
DOI  :  10.1186/1752-0509-7-141
 received in 2013-05-01, accepted in 2013-12-16,  发布年份 2013
PDF
【 摘 要 】

Background

Epigenetics refers to the reversible functional modifications of the genome that do not correlate to changes in the DNA sequence. The aim of this study is to understand DNA methylation patterns across different stages of lung adenocarcinoma (LUAD).

Results

Our study identified 72, 93 and 170 significant DNA methylated genes in Stages I, II and III respectively. A set of common 34 significant DNA methylated genes located in the promoter section of the true CpG islands were found across stages, and these were: HOX genes, FOXG1, GRIK3, HAND2, PRKCB, etc. Of the total significant DNA methylated genes, 65 correlated with transcription function. The epigenetic analysis identified the following novel genes across all stages: PTGDR, TLX3, and POU4F2. The stage-wise analysis observed the appearance of NEUROG1 gene in Stage I and its re-appearance in Stage III. The analysis showed similar epigenetic pattern across Stage I and Stage III. Pathway analysis revealed important signaling and metabolic pathways of LUAD to correlate with epigenetics. Epigenetic subnetwork analysis identified a set of seven conserved genes across all stages: UBC, KRAS, PIK3CA, PIK3R3, RAF1, BRAF, and RAP1A. A detailed literature analysis elucidated epigenetic genes like FOXG1, HLA-G, and NKX6-2 to be known as prognostic targets.

Conclusion

Integrating epigenetic information for genes with expression data can be useful for comprehending in-depth disease mechanism and for the ultimate goal of better target identification.

【 授权许可】

   
2013 Desai et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150327080345779.pdf 3465KB PDF download
Figure 7. 101KB Image download
Figure 6. 108KB Image download
Figure 5. 82KB Image download
Figure 4. 95KB Image download
Figure 3. 59KB Image download
Figure 2. 32KB Image download
Figure 1. 61KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

【 参考文献 】
  • [1]Garnis C, Buys TP, Lam WL: Genetic alteration and gene expression modulation during cancer progression. Mol Cancer 2004, 3:9. BioMed Central Full Text
  • [2]Steen HB: The origin of oncogenic mutations: where is the primary damage? Carcinogenesis 2000, 21:1773-1776.
  • [3]Liu H, Su JZ, Li JH, Liu HB, Lv J, Li BY, Qiao H, Zhang Y: Prioritizing cancer-related genes with aberrant methylation based on a weighted protein-protein interaction network. Bmc Syst Biol 2011, 5:158. BioMed Central Full Text
  • [4]Levenson V, Melnikov A: DNA Methylation as Clinically Useful Biomarkers-Light at the End of the Tunnel. Pharmaceuticals 2012, 5:1.
  • [5]Lauss M, Aine M, Sjodahl G, Veerla S, Patschan O, Gudjonsson S, Chebil G, Lovgren K, Ferno M, Mansson W, et al.: DNA methylation analyses of urothelial carcinoma reveal distinct epigenetic subtypes and an association between gene copy number and methylation status. Epigenetics-Us 2012, 7:858-867.
  • [6]Lund AH, van Lohuizen M: Epigenetics and cancer. Genes Dev 2004, 18:2315-2335.
  • [7]Bock C: Analysing and interpreting DNA methylation data. Nat Rev Genet 2012, 13:705-719.
  • [8]Esteller M: Epigenetics in Cancer. N Engl J Med 2008, 358:1148-1159.
  • [9]Brena RM, Costello JF: Genome-epigenome interactions in cancer. Hum Mol Genet 2007, 16:R96-R105.
  • [10]Esteller M: Cancer genomics: DNA methylomes and histone-modification maps. Nat Rev Genet 2007, 8:286-298.
  • [11]Rodenhiser D, Mann M: Epigenetics and human disease: translating basic biology into clinical applications. Can Med Assoc J 2006, 174:341-348.
  • [12]Du X, Han L, Guo AY, Zhao ZM: Features of methylation and gene expression in the promoter-associated CpG islands using human methylome data. Comp Funct Genom 2012, 2012:598987.
  • [13]Ponger L, Mouchiroud D: CpGProD: identifying CpG islands associated with transcription start sites in large genomic mammalian sequences. Bioinformatics 2002, 18:631-633.
  • [14]Han L, Zhao Z: CpG islands or CpG clusters:how to identify functional GC-rich regions in a genome? BMC Bioinformatics 2009, 10:65. BioMed Central Full Text
  • [15]Esteller M: Epigenetic gene silencing in cancer: the DNA hypermethylome. Hum Mol Genet 2007, 16:R50-R59.
  • [16]Chen P-Y, Feng- S, Joo JWJ, Jacobsen SE, Pellegrini M: A comparative analysis of DNA methylation across human embryonic stem cell lines. Genome Biology 2011, 12:R62. BioMed Central Full Text
  • [17]Wrzodek C, Buchel F, Hinselmann G, Eichner J, Mittag F, Zell A: Linking the epigenome to the genome: correlation of different features to DNA methylation of CpG islands. PLoS One 2012, 7:e35327.
  • [18]Vincent A, Omura N, Hong SM, Jaffe A, Eshleman J, Goggins M: Genome-wide analysis of promoter methylation associated with gene expression profile in pancreatic adenocarcinoma. Clin Cancer Res 2011, 17:4341-4354.
  • [19]Baylin SB, Herman JG: DNA hypermethylation in tumorigenesis - epigenetics joins genetics. Trends Genet 2000, 16:168-174.
  • [20]Xie L, Weichel B, Ohm JE, Zhang K: An integrative analysis of DNA methylation and RNA-Seq data for human heart, kidney and liver. Bmc Syst Biol 2011, 5(Suppl 3):S4. BioMed Central Full Text
  • [21]Buness A, Kuner R, Ruschhaupt M, Poustka A, Sultmann H, Tresch A: Identification of aberrant chromosomal regions from gene expression microarray studies applied to human breast cancer. Bioinformatics 2007, 23:2273-2280.
  • [22]Holger Heyn H, Carmona F, Gomez A, Ferreira H, Bell T, Sayols S, Ward K, Stefansson O, Moran S, Sandoval J, et al.: DNA methylation profiling in breast cancer discordant identical twins identifies DOK7 as novel epigenetic biomarker. Carcinogenesis 2013, 34:102-108.
  • [23]Esteller M, Silva JM, Dominguez G, Bonilla F, Matias-Guiu X, Lerma E, Bussaglia E, Prat J, Harkes IC, Repasky EA, et al.: Promoter hypermethylation and BRCA1 inactivation in sporadic breast and ovarian tumors. J Natl Cancer I 2000, 92:564-569.
  • [24]Carvalho RH, Haberle V, Hou J, van Gent T, Thongjuea S, van IJcken W, Kockx C, Brouwer R, Rijkers E, Sieuwerts A, et al.: Genome-wide DNA methylation profiling of non-small cell lung carcinomas. Epigenet Chromatin 2012, 5:9. BioMed Central Full Text
  • [25]Singh P, Yang M, Dai HF, Yu DK, Huang Q, Tan W, Kernstine KH, Lin DX, Shen BH: Overexpression and hypomethylation of flap endonuclease 1 gene in breast and other cancers. Mol Cancer Res 2008, 6:1710-1717.
  • [26]Sun W, Liu Y, Glazer CA, Shao C, Bhan S, Demokan S, Zhao M, Rudek MA, Ha PK, Califano JA: TKTL1 is activated by promoter hypomethylation and contributes to head and neck squamous cell carcinoma carcinogenesis through increased aerobic glycolysis and HIF1alpha stabilization. Clin Cancer Res 2010, 16:857-866.
  • [27]Lokk K, Vooder T, Kolde R, Valk K, Vosa U, Roosipuu R, Milani L, Fischer K, Koltsina M, Urgard E, et al.: Methylation markers of early-stage non-small cell lung cancer. PLoS One 2012, 7:e39813.
  • [28]National Cancer Institute. [http://www.cancer.gov/cancertopics/types/lung webcite]
  • [29]Shinjo K, Okamoto Y, An B, Yokoyama T, Takeuchi I, Fujii M, Osada H, Usami N, Hasegawa Y, Ito H, et al.: Integrated analysis of genetic and epigenetic alterations reveals CpG island methylator phenotype associated with distinct clinical characters of lung adenocarcinoma. Carcinogenesis 2012, 33:1277-1285.
  • [30]Heller G, Babinsky VN, Ziegler B, Weinzierl M, Noll C, Altenberger C, Mullauer L, Dekan G, Grin Y, Lang G, et al.: Genome-wide CpG island methylation analyses in non-small cell lung cancer patients. Carcinogenesis 2013, 34:513-521.
  • [31]Kwang-Il Goh K, Cusick ME, Valle D, Childs B, Vidal M, Baraba’si AL: The human disease network. Proc Natl Acad Sci USA 2007, 104:8685-8690.
  • [32]Storey JD: A direct approach to false discovery rates. J Roy Stat Soc B 2002, 64:479-498.
  • [33]Suzuki MM, Bird A: DNA methylation landscapes: provocative insights from epigenomics. Nat Rev Genet 2008, 9:465-476.
  • [34]Stark C, Breitkreutz BJ, Reguly T, Boucher L, Breitkreutz A, Tyers M: BioGRID: a general repository for interaction datasets. Nucleic Acids Res 2006, 34(suppl 1):D535-D539.
  • [35]Reimand J, Kull M, Peterson H, Hansen J, Vilo J: g:Profiler - a web-based toolset for functional profiling of gene lists from large-scale experiments. Nucleic Acids Res 2007, 35(suppl 2):W193-W200.
  • [36]Reimand J, Arak T, Vilo J: g:Profiler–a web server for functional interpretation of gene lists (2011 update). Nucleic Acids Res 2011, 39(suppl 2):W307-W315.
  • [37]Gray S, Pandha HS, Michael A, Middleton G, Morgan R: HOX genes in pancreatic development and cancer. JOP 2011, 12:216-219.
  • [38]Cheng W, Liu L, Yoshida H, Rosen D, Naora H: Lineage infidelity of epithelial ovarian cancers is controlled by HOX genes that specify regional identity in the reproductive tract. Nat Med 2005, 11(5):537. Epub 2005, Apr 10
  • [39]Hwang SH, Kim KU, Kim JE, Kim HH, Lee MK, Lee CH, Lee SY, Oh T, An S: Detection of HOXA9 gene methylation in tumor tissues and induced sputum samples from primary lung cancer patients. Clin Chem Lab Med 2011, 49:699-704.
  • [40]Rauch T, Wang ZD, Zhang XM, Zhong XY, Wu XW, Lau SK, Kernstine KH, Riggs AD, Pfeifer GP: Homeobox gene methylation in lung cancer studied by genome-wide analysis with a microarray-based methylated CpG island recovery assay. Proc Natl Acad Sci USA 2007, 104:5527-5532.
  • [41]Charlesworth JC, Curran JE, Johnson MP, Goring HH, Dyer TD, Diego VP, Kent JW, Mahaney MC, Almasy L, MacCluer JW, et al.: Transcriptomic epidemiology of smoking: the effect of smoking on gene expression in lymphocytes. Bmc Med Genomics 2010, 3:29. BioMed Central Full Text
  • [42]Spisak S, Kalmar A, Galamb O, Wichmann B, Sipos F, Peterfia B, Csabai I, Kovalszky I, Semsey S, Tulassay Z, et al.: Genome-wide screening of genes regulated by DNA methylation in colon cancer development. PLoS One 2012, 7:e46215.
  • [43]Vilas-Zornoza A, Agirre X, Martin-Palanco V, Martin-Subero JI, San Jose-Eneriz E, Garate L, Alvarez S, Miranda E, Rodriguez-Otero P, Rifon J, et al.: Frequent and simultaneous epigenetic inactivation of TP53 pathway genes in acute lymphoblastic leukemia. PLoS One 2011, 6:e17012.
  • [44]Hartmann O, Spyratos F, Harbeck N, Dietrich D, Fassbender A, Schmitt M, Eppenberger-Castori S, Vuaroqueaux V, Lerebours F, Welzel K, et al.: DNA methylation markers predict outcome in node-positive, estrogen receptor-positive breast cancer with adjuvant anthracycline-based chemotherapy. Clin Cancer Res 2009, 15:315-323.
  • [45]Davis E, Teng H, Bilican B, Parker MI, Liu B, Carriera S, Goding CR, Prince S: Ectopic Tbx2 expression results in polyploidy and cisplatin resistance. Oncogene 2008, 27:976-984.
  • [46]Geng JF, Sun JF, Lin Q, Gu J, Zhao YX, Zhang HY, Feng X, He YH, Wang W, Zhou XY, et al.: Methylation status of NEUROG2 and NID2 improves the diagnosis of stage I NSCLC. Oncol Lett 2012, 3:901-906.
  • [47]Rauch TA, Wang ZD, Wu XW, Kernstine KH, Riggs AD, Pfeifer GP: DNA methylation biomarkers for lung cancer. Tumor Biol 2012, 33:287-296.
  • [48]Zhang Y, Zhao H, Wang YL, Lin Y, Tan Y, Fang XX, Zheng LW: Non-small cell lung cancer invasion and metastasis promoted by MMP-26. Mol Med Rep 2011, 4:1201-1209.
  • [49]Rebhan M, ChalifaCaspi V, Prilusky J, Lancet D: GeneCards: Integrating information about genes, proteins and diseases. Trends Genet 1997, 13:163-163.
  • [50]Lopez-Lago MA, Thodima VJ, Guttapalli A, Chan T, Heguy A, Molina AM, Reuter VE, Motzer RJ, Chaganti RSK: Genomic deregulation during metastasis of renal cell carcinoma implements a myofibroblast-like program of gene expression. Cancer Res 2010, 70:9682-9692.
  • [51]Kwon YJ, Lee SJ, Koh JS, Kim SH, Lee HW, Kang MC, Bae JB, Kim YJ, Park JH: Genome-Wide Analysis of DNA Methylation and the Gene Expression Change in Lung Cancer. J Thorac Oncol 2012, 7:20-33.
  • [52]Snoussi K, Strosberg AD, Bouaouina N, Ben Ahmed S, Helal AN, Chouchane L: Leptin and leptin receptor polymorphisms are associated with increased risk and poor prognosis of breast carcinoma. Bmc Cancer 2006, 6:38. BioMed Central Full Text
  • [53]Ketterer K, Kong B, Frank D, Giese NA, Bauer A, Hoheisel J, Korc M, Kleeff J, Michalski CW, Friess H: Neuromedin U is overexpressed in pancreatic cancer and increases invasiveness via the hepatocyte growth factor c-Met pathway. Cancer Lett 2009, 277:72-81.
  • [54]Lin N, Di C, Bortoff K, Fu J, Truszkowski P, Killela P, Duncan C, McLendon R, Bigner D, Gregory S, et al.: Deletion or epigenetic silencing of AJAP1 on 1p36 in glioblastoma. Mol Cancer Res 2012, 10:208-217.
  • [55]Dong J, Hu ZB, Wu C, Guo H, Zhou BS, Lv JC, Lu DR, Chen KX, Shi YY, Chu MJ, et al.: Association analyses identify multiple new lung cancer susceptibility loci and their interactions with smoking in the Chinese population. Nat Genet 2012, 44:895-899.
  • [56]Mosca E, Alfieri R, Merelli I, Viti F, Calabria A, Milanesi L: A multilevel data integration resource for breast cancer study. Bmc Syst Biol 2010, 4:76. BioMed Central Full Text
  • [57]Racz A, Brass N, Hofer M, Sybrecht GW, Remberger K, Meese EU: Gene amplification at chromosome 1pter-p33 including the genes PAX7 and ENO1 in squamous cell lung carcinoma. Int J Oncol 2000, 17:67-73.
  • [58]Widschwendter M, Fiegl H, Egle D, Mueller-Holzner E, Spizzo G, Marth C, Weisenberger DJ, Campan M, Young J, Jacobs I, et al.: Epigenetic stem cell signature in cancer. Nat Genet 2007, 39:157-158.
  • [59]Yin D, Jia Y, Yu Y, Brock MV, Herman JG, Han C, Su X, Liu Y, Guo M: SOX17 methylation inhibits its antagonism of Wnt Signaling pathway in Lung cancer. Discov Med 2012, 14:33-40.
  • [60]Tseng RC, Hsieh FJ, Hsu HS, Wang YC: Minimal deletion regions in lung squamous cell carcinoma: association with abnormality of the DNA double-strand break repair genes and their applications on gene identification and prognostic biomarkers. Lung Cancer 2008, 59:332-339.
  • [61]Kim YH, Lee HC, Kim SY, Il Yeom Y, Ryu KJ, Min BH, Kim DH, Son HJ, Rhee PL, Kim JJ, et al.: Epigenomic analysis of aberrantly methylated genes in colorectal cancer identifies genes commonly affected by epigenetic alterations. Ann Surg Oncol 2011, 18:2338-2347.
  • [62]Morris MR, Ricketts CJ, Gentle D, McRonald F, Carli N, Khalili H, Brown M, Kishida T, Yao M, Banks RE, et al.: Genome-wide methylation analysis identifies epigenetically inactivated candidate tumour suppressor genes in renal cell carcinoma. Oncogene 2011, 30:1390-1401.
  • [63]Hofsli E, Wheeler TE, Langaas M, Laegreid A, Thommesen L: Identification of novel neuroendocrine-specific tumour genes. Brit J Cancer 2008, 99:1330-1339.
  • [64]Wu XW, Rauch TA, Zhong XY, Bennett WP, Latif F, Krex D, Pfeifer GP: CpG island hypermethylation in human astrocytomas. Cancer Res 2010, 70:2718-2727.
  • [65]Gyongyosi E, Szalmas A, Ferenczi A, Konya J, Gergely L, Veress G: Effects of human papillomavirus (HPV) type 16 oncoproteins on the expression of involucrin in human keratinocytes. Virol J 2012, 9:36. BioMed Central Full Text
  • [66]Palacios D, Summerbell D, Rigby PWJ, Boyes J: Interplay between DNA methylation and transcription factor availability: implications for developmental activation of the mouse myogenin gene. Mol Cell Biol 2010, 30:3805-3815.
  • [67]Irvine RA, Lin IG, Hsieh CL: DNA methylation has a local effect on transcription and histone acetylation. Mol Cell Biol 2002, 22:6689-6696.
  • [68]Watanabe T, Miura T, Degawa Y, Fujita Y, Inoue M, Kawaguchi M, Furihata C: Comparison of lung cancer cell lines representing four histopathological subtypes with gene expression profiling using quantitative real-time PCR. Cancer Cell Int 2010, 10:2. BioMed Central Full Text
  • [69]Kim TH, Jo SW, Lee YS, Kim YJ, Lee SC, Kim WJ, Yun SJ: Forkhead box O-class 1 and Forkhead box G1 as Prognostic Markers for Bladder Cancer. J Korean Med Sci 2009, 24:3.
  • [70]Metodieva SN, Nikolova DN, Cherneva RV, Dimova II, Petrov DB, Toncheva DI: Expression analysis of angiogenesis-related genes in Bulgarian patients with early-stage non-small cell lung cancer. Tumori 2011, 97:86-94.
  • [71]Kelly ZL, Michael A, Butler-Manuel S, Pandha HS, Morgan RGL: HOX genes in ovarian cancer. J Ovarian Res 2011, 4:16. BioMed Central Full Text
  • [72]Zhao Y, Zhou H, Ma K, Sun J, Feng X, Geng J, Gu J, Wang W, Zhang H, He Y, et al.: Abnormal methylation of seven genes and their associations with clinical characteristics in early stage non-small cell lung cancer. Int J Mol Med 2013, 5:1211-1218.
  • [73]Cao M, Yie SM, Liu J, Ye SR, Xia D, Gao E: Plasma soluble HLA-G is a potential biomarker for diagnosis of colorectal, gastric, esophageal and lung cancer. Tissue Antigens 2011, 78:120-128.
  • [74]Kaneisha M, Goto S, Sato Y, Furumichi M, Tanabe M: KEGG for integration and interpretation of large-scale molecular datasets. Nucleic Acids Res 2012, 40:D109-D114.
  • [75]Huang X, Du X, Li Y: The role of BCL11B in hematological malignancy. Exp Hematol Oncol 2012, 1:22. BioMed Central Full Text
  • [76]Guenin S, Mouallif M, Deplus R, Lampe X, Krusy N, Calonne E, Delbecque K, Kridelka F, Fuks F, Ennaji MM, et al.: Aberrant promoter methylation and expression of UTF1 during cervical carcinogenesis. PLoS One 2012, 7:e42704.
  • [77]Okamoto J, Hirata T, Chen Z, Zhou HM, Mikami I, Li H, Beltran A, Johansson M, Coussens LM, Clement G, et al.: EMX2 is epigenetically silenced and suppresses growth in human lung cancer. Oncogene 2010, 29:5969-5975.
  • [78]Anderson AR, White P, Kaestnar KH, Sussel L: Identification of known and novel pancreas genes expressed downstream of Nkx2.2 during development. BMC Development Biology 2009, 9:65. doi:10.1186/1471-213X-9-65. PMID:2003319 BioMed Central Full Text
  • [79]McCabe M, Lee E, Vertino P: A multi-factorial signature of DNA sequence and polycomb binding predicts aberrant CpG Island methylation. Cancer Res 2009, 69:282-291.
  • [80]Lleras RA, Adrien LR, Smith RV, Brown B, Jivraj N, Keller C, Sarta C, Schlecht NF, Harris TM, Childs G, et al.: Hypermethylation of a cluster of Kruppel-type zinc finger protein genes on chromosome 19q13 in oropharyngeal squamous cell carcinoma. Am J Pathol 2011, 178:1965-1974.
  • [81]Steinmann K, Richter A, Dammann H: Epigenetic silencing of erythropoietin in human cancers. Genes Cancer 2011, 2:65-73.
  • [82]van Vlodrop IJH, Baldewijns MML, Smits KM, Schouten LJ, van Neste L, van Criekinge W, van Poppel H, Lerut E, Schuebel KE, Ahuja N, et al.: Prognostic Significance of Gremlin1 (GREM1) promoter CpG Island hypermethylation in clear cell renal cell carcinoma. Am J Pathol 2010, 176:575-584.
  • [83]Bennett KL, Karpenko M, Lin MT, Claus R, Arab K, Dyckhoff G, Plinkert P, Herpel E, Smiraglia D, Plass C: Frequently methylated tumor suppressor genes in head and neck squamous cell carcinoma. Cancer Res 2008, 68:4494-4499.
  • [84]Bailey-Wilson JE, Amos CI, Pinney SM, Petersen GM, de Andrade M, Wiest JS, Fain P, Schwartz AG, You M, Franklin W, et al.: A major lung cancer susceptibility locus maps to chromosome 6q23-25. Am J Hum Genet 2004, 75:460-474.
  • [85]Wang Y, Broderick P, Matakidou A, Eisen T, Houlston RS: Chromosome 15q25 (CHRNA3-CHRNA5) variation impacts indirectly on lung cancer risk. PLoS One 2011, 6:e19085.
  • [86]Welsh J, Sapinoso L, Kern S, Brown D, Liu T, Bauskin A, Ward R, Hawkins N, Quinn D, Russell P, et al.: Large-scale delineation of secreted protein biomarkers overexpressed in cancer tissue and serum. Proc Natl Acad Sci USA 2003, 100:3410-3415.
  • [87]Yang SH: Gene amplifications at chromosome 7 of the human gastric cancer genome. Int J Mol Med 2007, 20:225-231.
  • [88]Cui J, Deubler DA, Rohr LR, Zhu XL, Maxwell TM, Changus JE, Brothman AR: Chromosome 7 abnormalities in prostate cancer detected by dual-color fluorescence in situ hybridization. Cancer Genet Cytogen 1998, 107:51-60.
  • [89]Buckingham LE, Coon JS, Morrison LE, Jacobson KKB, Jewell SS, Kaiser KA, Mauer AM, Muzzafar T, Polowy C, Basu S, et al.: The prognostic value of chromosome 7 polysomy in non-small cell lung cancer patients treated with gefitinib. J Thorac Oncol 2007, 2:414-422.
  • [90]Tsuji T, Tagawa Y, Hisamatsu T, Nakamura S, Terada R, Sawai T, Yasutake T, Ayabe H: p53 alterations and chromosome 17 aberrations in non-small cell lung cancer. Gan to kagaku ryoho Cancer & Chemotherapy 1997, 24(Suppl 2):263-268.
  • [91]Kamnasaran D, Cox DW: Current status of human chromosome 14. J Med Genet 2002, 39:81-90.
  • [92]Jagla K, Dolle P, Mattei MG, Jagla T, Schuhbaur B, Dretzen G, Bellard F, Bellard M: Mouse Lbx1 and Human Lbx1 define a novel mammalian homeobox gene family related to the drosophila lady bird genes. Mech Develop 1995, 53:345-356.
  • [93]Kalari S, Pfeifer GP: Identification of driver and passenger DNA methylation in cancer by epigenomic analysis. Adv Genet 2010, 70:277-308.
  • [94]Chung W, Bondaruk J, Jelinek J, Lotan Y, Liang SD, Czerniak B, Issa JPJ: Detection of bladder cancer using novel DNA methylation biomarkers in urine sediments. Cancer Epidem Biomar 2011, 20:1483-1491.
  • [95]Choi K, Creighton CJ, Stivers D, Fujimoto N, Kurie JM: Transcriptional profiling of non-small cell lung cancer cells with activating EGFR somatic mutations. PLoS One 2007, 2:e1226.
  • [96]Pinto A, Morello S, Sorrentino R: Lung cancer and Toll-like receptors. Cancer Immunol Immun 2011, 60:1211-1220.
  • [97]Antoon JW, Lai R, Struckhoff AP, Nitschke AM, Elliott S, Martin EC, Rhodes LV, Yoon NS, Salvo VA, Shan B, et al.: Altered death receptor signaling promotes epithelial-to-mesenchymal transition and acquired chemoresistance. Sci Rep 2012, 2:539.
  • [98]Mukhopadhyay NK, Gordon GJ, Chen CJ, Bueno R, Sugarbaker DJ, Jaklitsch MT: Activation of focal adhesion kinase in human lung cancer cells involves multiple and potentially parallel signaling events. J Cell Mol Med 2005, 9:387-397.
  • [99]Savani M, Guo Y, Carbone DP, Csiki I: Sonic hedgehog pathway expression in non-small cell lung cancer. Therapeutic advances in medical oncology 2012, 4:225-233.
  • [100]Pradhan MP, Prasad NKA, Palakal MJ: A systems biology approach to the global analysis of transcription factors in colorectal cancer. Bmc Cancer 2012, 12:331. BioMed Central Full Text
  • [101]Makinoshima H, Ishii G, Kojima M, Fujii S, Higuchi Y, Kuwata T, Ochiai A: PTPRZ1 regulates calmodulin phosphorylation and tumor progression in small-cell lung carcinoma. Bmc Cancer 2012, 12:537. BioMed Central Full Text
  • [102]Shigemitsu K, Sekido Y, Usami N, Mori S, Sato M, Horio Y, Hasegawa Y, Bader SA, Gazdar AF, Minna JD, et al.: Genetic alteration of the beta-catenin gene (CTNNB1) in human lung cancer and malignant mesothelioma and identification of a new 3p21.3 homozygous deletion. Oncogene 2001, 20:4249-4257.
  • [103]Yanagisawa K, Uchida K, Nagatake M, Masuda A, Sugiyama M, Saito T, Yamaki K, Takahashi T, Osada H: Heterogeneities in the biological and biochemical functions of Smad2 and Smad4 mutants naturally occurring in human lung cancers. Oncogene 2000, 19:2305-2311.
  • [104]Mise N, Savai R, Yu H, Schwarz J, Kaminski N, Eickelberg O: Zyxin is a TGF-β/Smad3 target gene that regulates lung cancer cell motility via integrin α5β1. JBiolChem 2012, 287:31393-31405.
  • [105]Mogi A, Kuwano H: TP53 mutations in nonsmall cell lung cancer. J Biomed Biotechnol 2011, 2011:583929.
  • [106]Nguyen DX, Chiang AC, Zhang XHF, Kim JY, Kris MG, Ladanyi M, Gerald WL, Massague J: WNT/TCF signaling through LEF1 and HOXB9 mediates lung adenocarcinoma metastasis. Cell 2009, 138:51-62.
  • [107]Mikkonen L, Pihlajamaa P, Sahu B, Zhang FP, Janne OA: Androgen receptor and androgen-dependent gene expression in lung. Mol Cell Endocrinol 2010, 317:14-24.
  • [108]Castro IC, Breiling A, Luetkenhaus K, Ceteci F, Hausmann S, Kress S, Lyko F, Rudel T, Rapp UR: MYC-induced epigenetic activation of GATA4 in lung adenocarcinoma. Mol Cancer Res 2013, 11:161-172.
  • [109]Yokoi S, Yasui K, Mori M, Iizasa T, Fujisawa T, Inazawa J: Amplification and overexpression of SKP2 are associated with metastasis of non-small-cell lung cancers to lymph nodes. Am J Pathol 2004, 165:175-180.
  • [110]Arora H, Qureshi R, Park AK, Park WY: Coordinated regulation of ATF2 by miR-26b in gamma-irradiated lung cancer cells. PLoS One 2011, 6:e23802.
  • [111]Salon C, Brambilla E, Brambilla C, Lantuejoul S, Gazzeri S, Eymin B: Altered pattern of Cul-1 protein expression and neddylation in human lung tumours: relationships with CAND1 and cyclin E protein levels. J Pathol 2007, 213:303-310.
  • [112]Peifer M, Fernandez-Cuesta L, Sos ML, George J, Seidel D, Kasper LH, Plenker D, Leenders F, Sun R, Zander T, et al.: Integrative genome analyses identify key somatic driver mutations of small-cell lung cancer. Nat Genet 2012, 44:1104-1110.
  • [113]Cheng WC, Chang CW, Chen CR, Tsai ML, Shu WY, Li CY, Hsu IC: Identification of reference genes across physiological states for qRT-PCR through microarray meta-analysis. PLoS One 2011, 6:e17347.
  • [114]Nguewa PA, Agorreta J, Blanco D, Lozano MD, Gomez-Roman J, Sanchez BA, Valles I, Pajares MJ, Pio R, Rodriguez MJ, et al.: Identification of Importin 8 (IPO8) as the most accurate reference gene for the clinicopathological analysis of lung specimens. Bmc Mol Biol 2008, 9:103. BioMed Central Full Text
  • [115]Brose MS, Volpe P, Feldman M, Kumar M, Rishi I, Gerrero R, Einhorn E, Herlyn M, Minna J, Nicholson A, et al.: BRAF and RAS mutations in human lung cancer and melanoma. Cancer Res 2002, 62:6997-7000.
  • [116]Okudela K, Suzuki M, Kageyama S, Bunai T, Nagura K, Igarashi H, Takamochi K, Suzuki K, Yamada T, Niwa H, et al.: PIK3CA mutation and amplification in human lung cancer. Pathol Int 2007, 57:664-671.
  • [117]Zhou J, Chen GB, Tang YC, Sinha RA, Wu Y, Yap CS, Wang G, Hu J, Xia X, Tan P, et al.: Genetic and bioinformatic analyses of the expression and function of PI3K regulatory subunit PIK3R3 in an Asian patient gastric cancer library. Bmc Med Genomics 2012, 5:34. BioMed Central Full Text
  • [118]Xu L, Wen Z, Zhou Y, Liu Z, Li Q, Fei G, Luo J, Ren T: MicroRNA-7regulated TLR9 signaling enhanced growth and metastatic potential of human lung cancer cells by altering PIK3R3/Akt pathway. molbiolcellorg 2012, 24:42-55.
  • [119]Cancer Genome Atlas http://cancergenome.nih.gov webcite
  • [120]Cui Q, Ma Y, Jaramillo M, Bari H, Awan A, Yang S, Zhang S, Liu L, Lu M, O’Connor-McCourt M: A map of human cancer signaling. Mol Syst Biol 2006, 3:152.
  • [121]Awan A, Bari H, Yan F, Moksong S, Yang S, Chowdhury S, Cui Q, Yu Z, Purisima E, Wang E: Regulatory network motifs and hotspots of cancer genes in a mammalian cellular signalling network. IET Syst Biol 2007, 1:292-297.
  • [122]Li L, Tibiche C, Fu C, Kaneko T, Moran MF, Schiller MR, Li SS-C, Wang E: The human phosphotyrosine signaling network: Evolution and hotspots of hijacking in cancer. Genome Res 2012, 22:1222-1230.
  • [123]Newman RH, Hu J, Rho H-S, Xie Z, Woodard C, Neiswinger J, Cooper C, Shirley M, Clark HM, Hu S: Construction of human activity-based phosphorylation networks. Mol Syst Biol 2013, 9:655.
  • [124]Chao C, Kay G, Judith B, Dandan Z, Elliot G, Li J, Liu C: Removing batch effects in analysis of expression microarray data: an evaluation of six batch adjustments methods. PLoS One 2010, 6:e17238.
  • [125]Du P, Zhang XA, Huang CC, Jafari N, Kibbe WA, Hou LF, Lin SM: Comparison of Beta-value and M-value methods for quantifying methylation levels by microarray analysis. BMC Bioinformatics 2010, 11:587. BioMed Central Full Text
  • [126]Kruskal WH: Historical notes on the Wilcoxon unpaired two-sample test. J Am Stat Assoc 1957, 52:356-360.
  • [127]Hollander M, Wolfe DA: Nonparametric Statistical Methods- Wiley Series in Probability and Statistics. 2nd edition. Wiley- Interscience; 1999. 978-0471190455
  • [128]Rindskopf D: An introduction to the bootstrap - Efron, B, Tibshirani, RJ. J Educ Behav Stat 1997, 22:245-245.
  • [129]Kaneisha M, Goto S: KEGG: kyoto enclyopedia of genes and genomes. Nucleic Acids Res 2000, 28:27-30.
  • [130]Newman MEJ: Networks: An Introduction. Oxford: Oxford University Press; 2010.
  • [131]Watts DJ, Strogatz SH: Collective dynamics of 'small-world’ networks. Nature 1998, 393:440-442.
  • [132]Yu GC, Li F, Qin YD, Bo XC, Wu YB, Wang SQ: GOSemSim: an R package for measuring semantic similarity among GO terms and gene products. Bioinformatics 2010, 26:976-978.
  • [133]Vidal M, Cusick ME, Barabasi AL: Interactome networks and human disease. Cell 2011, 144:6.
  • [134]Chuang HY, Lee E, Liu YT, Lee D, Ideker T: Network-based classification of breast cancer metastasis. Mol Syst Biol 2007, 3:140.
  • [135]Milenkovic T, Memisevic V, Bonato A, Przulj N: Dominating biological networks. PLoS One 2011, 6:e23016.
  文献评价指标  
  下载次数:46次 浏览次数:14次