期刊论文详细信息
BMC Neuroscience
Systematic and quantitative mRNA expression analysis of TRP channel genes at the single trigeminal and dorsal root ganglion level in mouse
Thomas Voets1  Grzegorz Owsianik1  Ine Vandewauw1 
[1] Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine and TRPLe (TRP Research Platform Leuven), KU Leuven, Leuven, Belgium
关键词: Sensory neurons;    mRNA expression analysis;    Somatosensation;    TRP channels;    Trigeminal ganglia;    Dorsal root ganglia;   
Others  :  1140447
DOI  :  10.1186/1471-2202-14-21
 received in 2012-09-26, accepted in 2013-01-31,  发布年份 2013
PDF
【 摘 要 】

Background

Somatosensory nerve fibres arising from cell bodies within the trigeminal ganglia (TG) in the head and from a string of dorsal root ganglia (DRG) located lateral to the spinal cord convey endogenous and environmental stimuli to the central nervous system. Although several members of the transient receptor potential (TRP) superfamily of cation channels have been implicated in somatosensation, the expression levels of TRP channel genes in the individual sensory ganglia have never been systematically studied.

Results

Here, we used quantitative real-time PCR to analyse and compare mRNA expression of all TRP channels in TG and individual DRGs from 27 anatomically defined segments of the spinal cord of the mouse. At the mRNA level, 17 of the 28 TRP channel genes, TRPA1, TRPC1, TRPC3, TRPC4, TRPC5, TRPM2, TRPM3, TRPM4, TRPM5, TRPM6, TRPM7, TRPM8, TRPV1, TRPV2, TRPV4, TRPML1 and TRPP2, were detectable in every tested ganglion. Notably, four TRP channels, TRPC4, TRPM4, TRPM8 and TRPV1, showed statistically significant variation in mRNA levels between DRGs from different segments, suggesting ganglion-specific regulation of TRP channel gene expression. These ganglion-to-ganglion differences in TRP channel transcript levels may contribute to the variability in sensory responses in functional studies.

Conclusions

We developed, compared and refined techniques to quantitatively analyse the relative mRNA expression of all TRP channel genes at the single ganglion level. This study also provides for the first time a comparative mRNA distribution profile in TG and DRG along the entire vertebral column for the mammalian TRP channel family.

【 授权许可】

   
2013 Vandewauw et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150325021931617.pdf 625KB PDF download
Figure 3. 74KB Image download
Figure 2. 119KB Image download
Figure 1. 62KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Lumpkin EA, Caterina MJ: Mechanisms of sensory transduction in the skin. Nature 2007, 445:858-865.
  • [2]Damann N, Voets T, Nilius B: TRPs in our senses. Curr Biol 2008, 18:R880-R889.
  • [3]Voets T, Talavera K, Owsianik G, Nilius B: Sensing with TRP channels. Nat Chem Biol 2005, 1:85-92.
  • [4]Montell C: The TRP superfamily of cation channels. Sci STKE 2005, 2005:re3.
  • [5]Jang Y, Lee Y, Kim SM, Yang YD, Jung J, Oh U: Quantitative analysis of TRP channel genes in mouse organs. Arch Pharm Res 2012, 35:1823-1830.
  • [6]Staaf S, Franck MC, Marmigere F, Mattsson JP, Ernfors P: Dynamic expression of the TRPM subgroup of ion channels in developing mouse sensory neurons. Gene Expr Patterns 2010, 10:65-74.
  • [7]Elg S, Marmigere F, Mattsson JP, Ernfors P: Cellular subtype distribution and developmental regulation of TRPC channel members in the mouse dorsal root ganglion. J Comp Neurol 2007, 503:35-46.
  • [8]Hjerling-Leffler J, Alqatari M, Ernfors P, Koltzenburg M: Emergence of functional sensory subtypes as defined by transient receptor potential channel expression. J Neurosci 2007, 27:2435-2443.
  • [9]Vriens J, Owsianik G, Hofmann T, Philipp SE, Stab J, Chen X, Benoit M, Xue F, Janssens A, Kerselaers S, et al.: TRPM3 is a nociceptor channel involved in the detection of noxious heat. Neuron 2011, 70:482-494.
  • [10]Xu H, Blair NT, Clapham DE: Camphor activates and strongly desensitizes the transient receptor potential vanilloid subtype 1 channel in a vanilloid-independent mechanism. J Neurosci 2005, 25:8924-8937.
  • [11]Dhaka A, Murray AN, Mathur J, Earley TJ, Petrus MJ, Patapoutian A: TRPM8 is required for cold sensation in mice. Neuron 2007, 54:371-378.
  • [12]Story GM, Peier AM, Reeve AJ, Eid SR, Mosbacher J, Hricik TR, Earley TJ, Hergarden AC, Andersson DA, Hwang SW, et al.: ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures. Cell 2003, 112:819-829.
  • [13]Bodding M, Wissenbach U, Flockerzi V: Characterisation of TRPM8 as a pharmacophore receptor. Cell Calcium 2007, 42:618-628.
  • [14]Owsianik G, Talavera K, Voets T, Nilius B: Permeation and selectivity of TRP channels. Annu Rev Physiol 2006, 68:685-717.
  • [15]Venkatachalam K, Montell C: TRP channels. Annu Rev Biochem 2007, 76:387-417.
  • [16]Bandell M, Macpherson LJ, Patapoutian A: From chills to chilis: mechanisms for thermosensation and chemesthesis via thermoTRPs. Curr Opin Neurobiol 2007, 17:490-497.
  • [17]Lee MW, McPhee RW, Stringer MD: An evidence-based approach to human dermatomes. Clin Anat 2008, 21:363-373.
  • [18]Karashima Y, Talavera K, Everaerts W, Janssens A, Kwan KY, Vennekens R, Nilius B, Voets T: TRPA1 acts as a cold sensor in vitro and in vivo. Proc Natl Acad Sci USA 2009, 106:1273-1278.
  • [19]Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D: The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 1997, 389:816-824.
  • [20]Caterina MJ, Rosen TA, Tominaga M, Brake AJ, Julius D: A capsaicin-receptor homologue with a high threshold for noxious heat. Nature 1999, 398:436-441.
  • [21]Lee H, Iida T, Mizuno A, Suzuki M, Caterina MJ: Altered thermal selection behavior in mice lacking transient receptor potential vanilloid 4. J Neurosci 2005, 25:1304-1310.
  • [22]Bautista DM, Siemens J, Glazer JM, Tsuruda PR, Basbaum AI, Stucky CL, Jordt SE, Julius D: The menthol receptor TRPM8 is the principal detector of environmental cold. Nature 2007, 448:204-208.
  • [23]Quick K, Zhao J, Eijkelkamp N, Linley JE, Rugiero F, Cox JJ, Raouf R, Gringhuis M, Sexton JE, Abramowitz J, et al.: TRPC3 and TRPC6 are essential for normal mechanotransduction in subsets of sensory neurons and cochlear hair cells. Open Biol 2012, 2:120068.
  • [24]Fleig A, Penner R: The TRPM ion channel subfamily: molecular, biophysical and functional features. Trends Pharmacol Sci 2004, 25:633-639.
  • [25]Monteilh-Zoller MK, Hermosura MC, Nadler MJ, Scharenberg AM, Penner R, Fleig A: TRPM7 provides an ion channel mechanism for cellular entry of trace metal ions. J Gen Physiol 2003, 121:49-60.
  • [26]Manzoni M, Monti E, Bresciani R, Bozzato A, Barlati S, Bassi MT, Borsani G: Overexpression of wild-type and mutant mucolipin proteins in mammalian cells: effects on the late endocytic compartment organization. FEBS Lett 2004, 567:219-224.
  • [27]Kottgen M: TRPP2 and autosomal dominant polycystic kidney disease. Biochim Biophys Acta 2007, 1772:836-850.
  • [28]Maier T, Guell M, Serrano L: Correlation of mRNA and protein in complex biological samples. FEBS Lett 2009, 583:3966-3973.
  • [29]Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, et al.: The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 2009, 55:611-622.
  • [30]Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F: Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 2002, 3:RESEARCH0034.
  • [31]Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods 2001, 25:402-408.
  文献评价指标  
  下载次数:39次 浏览次数:8次