期刊论文详细信息
BMC Microbiology
Mangotoxin production of Pseudomonas syringae pv. syringae is regulated by MgoA
Francisco M Cazorla5  Jos M Raaijmakers1  Antonio de Vicente5  José A Gutiérrez-Barranquero2  Eva Arrebola4  Menno van der Voort3  Víctor J Carrión1 
[1] Department of Microbial Ecology, The Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands;BIOMERIT Research Centre, School of Microbiology, University College Cork, National University of Ireland, Cork, Ireland;Laboratory of Phytopathology, Wageningen University, Wageningen, 6708 PB The Netherlands;Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”-Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Estación Experimental La Mayora, Algarrobo-Costa, 29750 Málaga, Spain;Departamento de Microbiología, Facultad de Ciencias, Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”-Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Universidad de Málaga, Campus de Teatinos, 29071 Málaga, Spain
关键词: Plant-microbe interaction;    GacS/GacA;    mgo operon;    Antimetabolite toxin;   
Others  :  1141830
DOI  :  10.1186/1471-2180-14-46
 received in 2013-12-10, accepted in 2014-02-12,  发布年份 2014
PDF
【 摘 要 】

Background

The antimetabolite mangotoxin is a key factor in virulence of Pseudomonas syringae pv. syringae strains which cause apical necrosis of mango trees. Previous studies showed that mangotoxin biosynthesis is governed by the mbo operon. Random mutagenesis led to the identification of two other gene clusters that affect mangotoxin biosynthesis. These are the gacS/gacA genes and mgo operon which harbors the four genes mgoBCAD.

Results

The current study shows that disruption of the nonribosomal peptide synthetase (NRPS) gene mgoA resulted in loss of mangotoxin production and reduced virulence on tomato leaves. Transcriptional analyses by qPCR and promoter reporter fusions revealed that mbo expression is regulated by both gacS/gacA and mgo genes. Also, expression of the mgo operon was shown to be regulated by gacS/gacA. Heterologous expression under the native promoter of the mbo operon resulted in mangotoxin production in non-producing P. syringae strains, but not in other Pseudomonas species. Also introduction of the mbo and mgo operons in nonproducing P. protegens Pf-5 did not confer mangotoxin production but did enhance transcription of the mbo promoter.

Conclusions

From the data obtained in this study, we conclude that both mbo and mgo operons are under the control of the gacS/gacA two-component system and that the MgoA product acts as a positive regulator of mangotoxin biosynthesis.

【 授权许可】

   
2014 Carrión et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150327145411360.pdf 1343KB PDF download
Figure 5. 39KB Image download
Figure 4. 80KB Image download
Figure 3. 72KB Image download
Figure 2. 105KB Image download
Figure 1. 82KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Kennelly MM, Cazorla FM, de Vicente A, Ramos C, Sundin GW: Pseudomonas syringae diseases of fruit trees: progress toward understanding and control. Plant Dis 2007, 91(1):4-17.
  • [2]Arrebola E, Cazorla FM, Durán VE, Rivera E, Olea F, Codina JC, Pérez-Garcı́a A, de Vicente A: Mangotoxin: a novel antimetabolite toxin produced by Pseudomonas syringae inhibiting ornithine/arginine biosynthesis. Physiol Mol Plant Path 2003, 63(3):117-127.
  • [3]Cazorla FM, Torés JA, Olalla L, Pérez-García A, Farré JM, de Vicente A: Bacterial apical necrosis of mango in southern Spain: a disease caused by Pseudomonas syringae pv. syringae. Phytopathology 1998, 88(7):614-620.
  • [4]Arrebola E, Cazorla FM, Romero D, Pérez-García A, de Vicente A: A nonribosomal peptide synthetase gene (mgoA) of Pseudomonas syringae pv. syringae is involved in mangotoxin biosynthesis and is required for full virulence. Mol Plant-Microbe Interact 2007, 20(5):500-509.
  • [5]Arrebola E, Cazorla FM, Codina JC, Gutiérrez-Barranquero JA, Pérez-García A, de Vicente A: Contribution of mangotoxin to the virulence and epiphytic fitness of Pseudomonas syringae pv. syringae. Int Microbiol 2009, 12(1139–6709):87-95.
  • [6]Carrión VJ, Arrebola E, Cazorla FM, Murillo J, de Vicente A: The mbo operon is specific and essential for biosynthesis of mangotoxin in Pseudomonas syringae. PLoS One 2012, 7(5):e36709.
  • [7]Arrebola E, Carrión VJ, Cazorla FM, Pérez-García A, Murillo J, de Vicente A: Characterisation of the mgo operon in Pseudomonas syringae pv. syringae UMAF0158 that is required for mangotoxin production. BMC Microbiol 2012, 12(1):10. BioMed Central Full Text
  • [8]Heeb S, Haas D: Regulatory roles of the GacS/GacA two-component system in plant-associated and other gram-negative bacteria. Mol Plant-Microbe Interact 2001, 14(12):1351-1363.
  • [9]Chancey ST, Wood DW, Pierson LS: Two-component transcriptional regulation of N -acyl-homoserine lactone production in Pseudomonas aureofaciens. Appl Environ Microbiol 1999, 65(6):2294-2299.
  • [10]Kay E, Humair B, Dénervaud V, Riedel K, Spahr S, Eberl L, Valverde C, Haas D: Two GacA-dependent small RNAs modulate the quorum-sensing response in Pseudomonas aeruginosa. J Bacteriol 2006, 188(16):6026-6033.
  • [11]Corbell N, Loper JE: A global regulator of secondary metabolite production in Pseudomonas fluorescens Pf-5. J Bacteriol 1995, 177(21):6230-6236.
  • [12]Whistler CA, Pierson LS III: Repression of phenazine antibiotic production in Pseudomonas aureofaciens strain 30-84 by RpeA. J Bacteriol 2003, 185(13):3718-3725.
  • [13]Hassan KA, Johnson A, Shaffer BT, Ren Q, Kidarsa TA, Elbourne LDH, Hartney S, Duboy R, Goebel NC, Zabriskie TM, Paulsen IT, Loper JE: Inactivation of the GacA response regulator in Pseudomonas fluorescens Pf-5 has far-reaching transcriptomic consequences. Environ Microbiol 2010, 12(4):899-915.
  • [14]Cheng X, de Bruijn I, van der Voort M, Loper JE, Raaijmakers JM: The Gac regulon of Pseudomonas fluorescens SBW25. Environ Microbiol Rep 2013, 5(4):608-619.
  • [15]Parkins MD, Ceri H, Storey DG: Pseudomonas aeruginosa GacA, a factor in multihost virulence, is also essential for biofilm formation. Mol Microbiol 2001, 40(5):1215-1226.
  • [16]Petrova OE, Sauer K: The novel two-component regulatory system BfiSR regulates biofilm development by controlling the small RNA rsmZ through CafA. J Bacteriol 2010, 192(20):5275-5288.
  • [17]Muller J, Shukla S, Jost K, Spormann A: The mxd operon in Shewanella oneidensis MR-1 is induced in response to starvation and regulated by ArcS/ArcA and BarA/UvrY. BMC Microbiol 2013, 13(1):119. BioMed Central Full Text
  • [18]Lu S-E, Scholz-Schroeder BK, Gross DC: Characterization of the salA, syrF, and syrG regulatory genes located at the right border of the syringomycin gene cluster of Pseudomonas syringae pv. syringae. Mol Plant-Microbe Interact 2002, 15(1):43-53.
  • [19]Wang N, Lu S-E, Wang J, Chen ZJ, Gross DC: The expression of genes encoding lipodepsipeptide phytotoxins by Pseudomonas syringae pv. syringae is coordinated in response to plant signal molecules. Mol Plant-Microbe Interact 2006, 19(3):257-269.
  • [20]Lu S-E, Wang N, Wang J, Chen ZJ, Gross DC: Oligonucleotide microarray analysis of the SalA regulon controlling phytotoxin production by Pseudomonas syringae pv. syringae. Mol Plant-Microbe Interact 2005, 18(4):324-333.
  • [21]Barta TM, Kinscherf TG, Willis DK: Regulation of tabtoxin production by the lemA gene in Pseudomonas syringae. J Bacteriol 1992, 174(9):3021-3029.
  • [22]Bender CL, Alarcón-Chaidez F, Gross DC: Pseudomonas syringae phytotoxins: mode of action, regulation, and biosynthesis by peptide and polyketide synthetases. Microbiol Mol Biol Rev 1999, 63(2):266-292.
  • [23]de la Torre-Zavala S, Aguilera S, Ibarra-Laclette E, Hernandez-Flores JL, Hernández-Morales A, Murillo J, Alvarez-Morales A: Gene expression of Pht cluster genes and a putative non-ribosomal peptide synthetase required for phaseolotoxin production is regulated by GacS/GacA in Pseudomonas syringae pv. phaseolicola. Res Microbiol 2011, 162(5):488-498.
  • [24]Willis DK, Hrabak EM, Rich JJ, Barta TM, Lindow SE, Panopoulos NJ: Isolation and characterization of a Pseudomonas syringae pv. syringae mutant deficient in lesion formation on bean. Mol Plant-Microbe Interact 1990, 3(3):149-156.
  • [25]Chatterjee A, Cui Y, Yang H, Collmer A, Alfano JR, Chatterjee AK: GacA, the response regulator of a two-component system, acts as a master regulator in Pseudomonas syringae pv. tomato DC3000 by controlling regulatory RNA, transcriptional activators, and alternate sigma factors. Mol Plant-Microbe Interact 2003, 16(12):1106-1117.
  • [26]Lindeberg M, Myers CR, Collmer A, Schneider DJ: Roadmap to new virulence determinants in Pseudomonas syringae: insights from comparative genomics and genome organization. Mol Plant-Microbe Interact 2008, 21(6):685-700.
  • [27]Loper JE, Hassan KA, Mavrodi DV, Davis EW II, Lim CK, Shaffer BT, Elbourne LDH, Stockwell VO, Hartney SL, Breakwell K, Henkels MD, Tetu SG, Rangel LI, Kidarsa TA, Wilson NL, van de Mortel JE, Song C, Blumhagen R, Radune D, Hostetler JB, Brinkac LM, Durkin AS, Kluepfel DA, Wechter WP, Anderson AJ, Kim YC, Pierson LS III, Pierson EA, Lindow SE, Kobayashi DY, et al.: Comparative genomics of Plant-Associated Pseudomonas spp.: insights into diversity and inheritance of traits involved in multitrophic interactions. PLoS Genet 2012, 8(7):e1002784.
  • [28]Vallet-Gely I, Opota O, Boniface A, Novikov A, Lemaitre B: A secondary metabolite acting as a signalling molecule controls Pseudomonas entomophila virulence. Cell Microbiol 2010, 12(11):1666-1679.
  • [29]Carrión VJ, Gutiérrez-Barranquero JA, Arrebola E, Bardaji L, Codina JC, de Vicente A, Cazorla FM, Murillo J: The mangotoxin biosynthetic operon (mbo) is specifically distributed within Pseudomonas syringae Genomospecies 1 and was acquired only once during evolution. Appl Environ Microbiol 2013, 79(3):756-767.
  • [30]Gutiérrez-Barranquero JA, Carrión VJ, Murillo J, Arrebola E, Arnold DL, Cazorla FM, de Vicente A: A Pseudomonas syringae diversity survey reveals a differentiated phylotype of the pathovar syringae associated with the mango host and mangotoxin production. Phytopathology 2013, 103(11):1115-1129.
  • [31]King EO, Ward MK, Raney DE: Two simple media for the demonstration of pyocyanin and fluorescin. J Lab Clin Med 1954, 44(2):301-307.
  • [32]Gasson MJ: Indicator technique for antimetabolic toxin production by phytopathogenic species of Pseudomonas. Appl Environ Microbiol 1980, 39(1):25-29.
  • [33]Hanahan D: Studies on transformation of Escherichia coli with plasmids. J M Biol 1983, 166(4):557-580.
  • [34]Feil H, Feil WS, Chain P, Larimer F, DiBartolo G, Copeland A, Lykidis A, Trong S, Nolan M, Goltsman E, Thiel J, Malfatti S, Loper JE, Lapidus A, Detter JC, Land M, Richardson PM, Kyrpides NC, Ivanova N, Lindow SE: Comparison of the complete genome sequences of Pseudomonas syringae pv. syringae B728a and pv. tomato DC3000. Proc Natl Acad Sci USA 2005, 102(31):11064-11069.
  • [35]Howell CR, Stipanovic RD: Suppression of Pythium ultimum-induced damping-off of cotton seedlings by Pseudomonas fluorescens and its antibiotic, pyoluteorin. Phytopathology 1980, 70:712-715.
  • [36]Kovach ME, Elzer PH, Steven Hill D, Robertson GT, Farris MA, Roop Ii RM, Peterson KM: Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 1995, 166(1):175-176.
  • [37]Spaink HP, Okker RJH, Wijffelman CA, Pees E, Lugtenberg BJJ: Promoters in the nodulation region of the Rhizobium leguminosarum Sym plasmid pRL1JI. Plant Mol Biol 1987, 9(1):27-39.
  • [38]Sambrook J, Russel DW: Molecular Cloning: A Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 2001.
  • [39]de Bruijn I, de Kock MJD, de Waard P, van Beek TA, Raaijmakers JM: Massetolide A biosynthesis in Pseudomonas fluorescens. J Bacteriol 2008, 190(8):2777-2789.
  • [40]de Bruijn I, Raaijmakers JM: Regulation of cyclic lipopeptide biosynthesis in Pseudomonas fluorescens by the ClpP protease. J Bacteriol 2009, 191(6):1910-1923.
  • [41]Miller JH: Experiments in Molecular Genetics. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory; 1972.
  • [42]Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment search tool. J Mol Biol 1990, 215(3):403-410.
  • [43]Bachmann BO, Ravel J: Chapter 8 methods for in silico prediction of microbial polyketide and nonribosomal peptide biosynthetic pathways from DNA sequence data. In Method Enzymol. Edited by David AH. PA: Academic Press; 2009:181-217. vol. Volume 458
  • [44]de Bruijn I, de Kock MJD, Yang M, de Waard P, van Beek TA, Raaijmakers JM: Genome-based discovery, structure prediction and functional analysis of cyclic lipopeptide antibiotics in Pseudomonas species. Mol Microbiol 2007, 63(2):417-428.
  • [45]Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S: MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011, 28(10):2731-2739.
  • [46]Rutherford K, Parkhill J, Crook J, Horsnell T, Rice P, Rajandream MA, Barrell B: Artemis: sequence visualization and annotation. Bioinformatics 2000, 16(10):944-945.
  • [47]Carver TJ, Rutherford KM, Berriman M, Rajandream MA, Barrell BG, Parkhill J: ACT: the Artemis comparison tool. Bioinformatics 2005, 21(16):3422-3423.
  • [48]Abbott JC, Aanensen DM, Rutherford K, Butcher S, Spratt BG: WebACT-an online companion for the Artemis Comparison Tool. Bioinformatics 2005, 21(18):3665-3666.
  • [49]Blumer C, Heeb S, Pessi G, Haas D: Global GacA-steered control of cyanide and exoprotease production in Pseudomonas fluorescens involves specific ribosome binding sites. Proc Natl Acad Sci USA 1999, 96(24):14073-14078.
  • [50]Valverde C, Lindell M, Wagner EGH, Haas D: A repeated GGA motif is critical for the activity and stability of the riboregulator RsmY of Pseudomonas fluorescens. J Biol Chem 2004, 279(24):25066-25074.
  • [51]Dubey AK, Baker CS, Suzuki K, Jones AD, Pandit P, Romeo T, Babitzke P: CsrA regulates translation of the Escherichia coli carbon starvation gene, cstA, by blocking ribosome access to the cstA transcript. J Bacteriol 2003, 185(15):4450-4460.
  • [52]Saitou N, Nei M: The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987, 4(4):406-425.
  • [53]Jones DT, Taylor WR, Thornton JM: The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci 1992, 8(3):275-282.
  • [54]Lapouge K, Sineva E, Lindell M, Starke K, Baker CS, Babitzke P, Haas D: Mechanism of hcnA mRNA recognition in the Gac/Rsm signal transduction pathway of Pseudomonas fluorescens. Mol Microbiol 2007, 66(2):341-356.
  • [55]Lapouge K, Schubert M, Allain FHT, Haas D: Gac/Rsm signal transduction pathway of gamma-proteobacteria: from RNA recognition to regulation of social behaviour. Mol Microbiol 2008, 67(2):241-253.
  • [56]Kay E, Dubuis C, Haas D: Three small RNAs jointly ensure secondary metabolism and biocontrol in Pseudomonas fluorescens CHA0. Proc Natl Acad Sci USA 2005, 102(47):17136-17141.
  • [57]Vodovar N, Vallenet D, Cruveiller S, Rouy Z, Barbe V, Acosta C, Cattolico L, Jubin C, Lajus A, Segurens B, Vacherie B, Wincker P, Weissenbach J, Lemaitre B, Médigue C, Boccard F: Complete genome sequence of the entomopathogenic and metabolically versatile soil bacterium Pseudomonas entomophila. Nat Biotechnol 2006, 24(6):673-679.
  文献评价指标  
  下载次数:21次 浏览次数:2次