期刊论文详细信息
BMC Neuroscience
Upregulated expression of brain enzymatic markers of arachidonic and docosahexaenoic acid metabolism in a rat model of the metabolic syndrome
Hyung-Wook Kim1  Stanley I Rapoport2  Yewon Cheon2  Epolia Ramadan2  Fei Gao2  Ameer Y Taha2 
[1] Department of Environmental and Occupational Health Science, University of Washington, Box 357234, 1705 Pacific St, Seattle, WA, 98195, USA;Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
关键词: Insulin resistance;    Sucrose;    Drebrin;    Metabolic syndrome;    Polyunsaturated fatty acids (PUFA);    Brain;    BDNF;    Docosahexaenoic acid;    Arachidonic acid;   
Others  :  1140858
DOI  :  10.1186/1471-2202-13-131
 received in 2012-07-17, accepted in 2012-10-05,  发布年份 2012
PDF
【 摘 要 】

Background

In animal models, the metabolic syndrome elicits a cerebral response characterized by altered phospholipid and unesterified fatty acid concentrations and increases in pro-apoptotic inflammatory mediators that may cause synaptic loss and cognitive impairment. We hypothesized that these changes are associated with phospholipase (PLA2) enzymes that regulate arachidonic (AA, 20:4n-6) and docosahexaenoic (DHA, 22:6n-6) acid metabolism, major polyunsaturated fatty acids in brain. Male Wistar rats were fed a control or high-sucrose diet for 8 weeks. Brains were assayed for markers of AA metabolism (calcium-dependent cytosolic cPLA2 IVA and cyclooxygenases), DHA metabolism (calcium-independent iPLA2 VIA and lipoxygenases), brain-derived neurotrophic factor (BDNF), and synaptic integrity (drebrin and synaptophysin). Lipid concentrations were measured in brains subjected to high-energy microwave fixation.

Results

The high-sucrose compared with control diet induced insulin resistance, and increased phosphorylated-cPLA2 protein, cPLA2 and iPLA2 activity and 12-lipoxygenase mRNA, but decreased BDNF mRNA and protein, and drebrin mRNA. The concentration of several n-6 fatty acids in ethanolamine glycerophospholipids and lysophosphatidylcholine was increased, as was unesterified AA concentration. Eicosanoid concentrations (prostaglandin E2, thromboxane B2 and leukotriene B4) did not change.

Conclusion

These findings show upregulated brain AA and DHA metabolism and reduced BDNF and drebrin, but no changes in eicosanoids, in an animal model of the metabolic syndrome. These changes might contribute to altered synaptic plasticity and cognitive impairment in rats and humans with the metabolic syndrome.

【 授权许可】

   
2012 Taha et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150325133055571.pdf 1169KB PDF download
Figure 7. 27KB Image download
Figure 6. 64KB Image download
Figure 5. 15KB Image download
Figure 4. 44KB Image download
Figure 3. 37KB Image download
Figure 2. 64KB Image download
Figure 1. 55KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

【 参考文献 】
  • [1]Alberti KG, Zimmet P, Shaw J: The metabolic syndrome–a new worldwide definition. Lancet 2005, 366(9491):1059-1062.
  • [2]Eckel RH, Grundy SM, Zimmet PZ: The metabolic syndrome. Lancet 2005, 365(9468):1415-1428.
  • [3]Zimmet PZ, Alberti KG, Shaw JE: Mainstreaming the metabolic syndrome: a definitive definition. Med J Aust 2005, 183(4):175-176.
  • [4]Dunbar JA, Reddy P, Davis-Lameloise N, Philpot B, Laatikainen T, Kilkkinen A, Bunker SJ, Best JD, Vartiainen E, Kai Lo S, et al.: Depression: an important comorbidity with metabolic syndrome in a general population. Diabetes Care 2008, 31(12):2368-2373.
  • [5]Fagiolini A, Frank E, Scott JA, Turkin S, Kupfer DJ: Metabolic syndrome in bipolar disorder: findings from the Bipolar Disorder Center for Pennsylvanians. Bipolar Disord 2005, 7(5):424-430.
  • [6]Segura B, Jurado MA, Freixenet N, Albuin C, Muniesa J, Junque C: Mental slowness and executive dysfunctions in patients with metabolic syndrome. Neurosci Lett 2009, 462(1):49-53.
  • [7]van den Berg E, Biessels GJ, de Craen AJ, Gussekloo J, Westendorp RG: The metabolic syndrome is associated with decelerated cognitive decline in the oldest old. Neurology 2007, 69(10):979-985.
  • [8]Vanhanen M, Koivisto K, Moilanen L, Helkala EL, Hanninen T, Soininen H, Kervinen K, Kesaniemi YA, Laakso M, Kuusisto J: Association of metabolic syndrome with Alzheimer disease: a population-based study. Neurology 2006, 67(5):843-847.
  • [9]Winocur G, Greenwood CE, Piroli GG, Grillo CA, Reznikov LR, Reagan LP, McEwen BS: Memory impairment in obese Zucker rats: an investigation of cognitive function in an animal model of insulin resistance and obesity. Behav Neurosci 2005, 119(5):1389-1395.
  • [10]Dinel AL, Andre C, Aubert A, Ferreira G, Laye S, Castanon N: Cognitive and emotional alterations are related to hippocampal inflammation in a mouse model of metabolic syndrome. PLoS One 2011, 6(9):e24325.
  • [11]Muller D, Nitsch RM, Wurtman RJ, Hoyer S: Streptozotocin increases free fatty acids and decreases phospholipids in rat brain. J Neural Transm 1998, 105(10–12):1271-1281.
  • [12]Plaschke K, Muller D, Hoyer S: Insulin-resistant brain state (IRBS) changes membrane composition of fatty acids in temporal and entorhinal brain cortices of rats: relevance to sporadic Alzheimer’s disease? J Neural Transm 2010, 117(12):1419-1422.
  • [13]Holman RT: Nutritional and functional requirements for essential fatty acids. Prog Clin Biol Res 1986, 222:211-228.
  • [14]Innis SM: Essential fatty acids in infant nutrition: lessons and limitations from animal studies in relation to studies on infant fatty acid requirements. Am J Clin Nutr 2000, 71(1 Suppl):238S-244S.
  • [15]Uauy R, Hoffman DR, Peirano P, Birch DG, Birch EE: Essential fatty acids in visual and brain development. Lipids 2001, 36(9):885-895.
  • [16]Sun AY, Cheng Y, Sun GY: Kainic acid-induced excitotoxicity in neurons and glial cells. Prog Brain Res 1992, 94:271-280.
  • [17]Rosenberger TA, Villacreses NE, Hovda JT, Bosetti F, Weerasinghe G, Wine RN, Harry GJ, Rapoport SI: Rat brain arachidonic acid metabolism is increased by a 6-day intracerebral ventricular infusion of bacterial lipopolysaccharide. J Neurochem 2004, 88(5):1168-1178.
  • [18]Chang YC, Kim HW, Rapoport SI, Rao JS: Chronic NMDA administration increases neuroinflammatory markers in rat frontal cortex: cross-talk between excitotoxicity and neuroinflammation. Neurochem Res 2008, 33(11):2318-2323.
  • [19]Basselin M, Ramadan E, Rapoport SI: Imaging brain signal transduction and metabolism via arachidonic and docosahexaenoic acid in animals and humans. Brain Res Bull 2012, 87(2–3):154-171.
  • [20]Burke JE, Dennis EA: Phospholipase A2 structure/function, mechanism, and signaling. J Lipid Res 2009, 50(Suppl):S237-S242.
  • [21]Clark JD, Lin LL, Kriz RW, Ramesha CS, Sultzman LA, Lin AY, Milona N, Knopf JL: A novel arachidonic acid-selective cytosolic PLA2 contains a Ca(2+)-dependent translocation domain with homology to PKC and GAP. Cell 1991, 65(6):1043-1051.
  • [22]Farooqui AA, Ong WY, Horrocks LA: Inhibitors of brain phospholipase A2 activity: their neuropharmacological effects and therapeutic importance for the treatment of neurologic disorders. Pharmacol Rev 2006, 58(3):591-620.
  • [23]Green JT, Orr SK, Bazinet RP: The emerging role of group VI calcium-independent phospholipase A2 in releasing docosahexaenoic acid from brain phospholipids. J Lipid Res 2008, 49(5):939-944.
  • [24]Strokin M, Sergeeva M, Reiser G: Docosahexaenoic acid and arachidonic acid release in rat brain astrocytes is mediated by two separate isoforms of phospholipase A2 and is differently regulated by cyclic AMP and Ca2+. Br J Pharmacol 2003, 139(5):1014-1022.
  • [25]Yang HC, Mosior M, Johnson CA, Chen Y, Dennis EA: Group-specific assays that distinguish between the four major types of mammalian phospholipase A2. Anal Biochem 1999, 269(2):278-288.
  • [26]Bazan NG: Neuroprotectin D1 (NPD1): a DHA-derived mediator that protects brain and retina against cell injury-induced oxidative stress. Brain Pathol 2005, 15(2):159-166.
  • [27]Marcheselli VL, Hong S, Lukiw WJ, Tian XH, Gronert K, Musto A, Hardy M, Gimenez JM, Chiang N, Serhan CN, et al.: Novel docosanoids inhibit brain ischemia-reperfusion-mediated leukocyte infiltration and pro-inflammatory gene expression. J Biol Chem 2003, 278(44):43807-43817.
  • [28]Rapoport SI: Arachidonic acid and the brain. J Nutr 2008, 138(12):2515-2520.
  • [29]Serhan CN: Novel eicosanoid and docosanoid mediators: resolvins, docosatrienes, and neuroprotectins. Curr Opin Clin Nutr Metab Care 2005, 8(2):115-121.
  • [30]Serhan CN, Oliw E: Unorthodox routes to prostanoid formation: new twists in cyclooxygenase-initiated pathways. J Clin Invest 2001, 107(12):1481-1489.
  • [31]Esposito G, Giovacchini G, Liow JS, Bhattacharjee AK, Greenstein D, Schapiro M, Hallett M, Herscovitch P, Eckelman WC, Carson RE, et al.: Imaging neuroinflammation in Alzheimer’s disease with radiolabeled arachidonic acid and PET. J Nucl Med 2008, 49(9):1414-1421.
  • [32]Kim HW, Rapoport SI, Rao JS: Altered expression of apoptotic factors and synaptic markers in postmortem brain from bipolar disorder patients. Neurobiol Dis 2009, 37(3):596-603.
  • [33]Rao JS, Harry GJ, Rapoport SI, Kim HW: Increased excitotoxicity and neuroinflammatory markers in postmortem frontal cortex from bipolar disorder patients. Mol Psychiatry 2010, 15(4):384-392.
  • [34]Makar TK, Hungund BL, Cook GA, Kashfi K, Cooper AJ: Lipid metabolism and membrane composition are altered in the brains of type II diabetic mice. J Neurochem 1995, 64(5):2159-2168.
  • [35]Hashimoto M, Kubota Y, Tanaka N, Yamaguchi Y, Fujii Y, Kagota S, Kawakita E, Shido O, Kunitomo M, Shinozuka K: Relationship between plasma and hippocampal lipid peroxidation in obese and hypertensive SHR/NDmcr-cp rats. Clin Exp Pharmacol Physiol 2004, 31(Suppl 2):S62-S64.
  • [36]Sharma J, Turk J, Mancuso DJ, Sims HF, Gross RW, McHowat J: Activation of group VI phospholipase A2 isoforms in cardiac endothelial cells. Am J Physiol Cell Physiol 2011, 300(4):C872-C879.
  • [37]Sharma J, Turk J, McHowat J: Endothelial cell prostaglandin I(2) and platelet-activating factor production are markedly attenuated in the calcium-independent phospholipase A(2)beta knockout mouse. Biochemistry 2010, 49(26):5473-5481.
  • [38]Basselin M, Ramadan E, Igarashi M, Chang L, Chen M, Kraft AD, Harry GJ, Rapoport SI: Imaging upregulated brain arachidonic acid metabolism in HIV-1 transgenic rats. J Cereb Blood Flow Metab 2011, 31(2):486-493.
  • [39]Thirumangalakudi L, Rao HV, Grammas P: Involvement of PGE2 and PGDH but not COX-2 in thrombin-induced cortical neuron apoptosis. Neurosci Lett 2009, 452(2):172-175.
  • [40]Acheson A, Conover JC, Fandl JP, DeChiara TM, Russell M, Thadani A, Squinto SP, Yancopoulos GD, Lindsay RM: A BDNF autocrine loop in adult sensory neurons prevents cell death. Nature 1995, 374(6521):450-453.
  • [41]Stranahan AM, Norman ED, Lee K, Cutler RG, Telljohann RS, Egan JM, Mattson MP: Diet-induced insulin resistance impairs hippocampal synaptic plasticity and cognition in middle-aged rats. Hippocampus 2008, 18(11):1085-1088.
  • [42]Molteni R, Barnard RJ, Ying Z, Roberts CK, Gomez-Pinilla F: A high-fat, refined sugar diet reduces hippocampal brain-derived neurotrophic factor, neuronal plasticity, and learning. Neuroscience 2002, 112(4):803-814.
  • [43]Li ZG, Zhang W, Sima AA: Alzheimer-like changes in rat models of spontaneous diabetes. Diabetes 2007, 56(7):1817-1824.
  • [44]Chepulis LM, Starkey NJ, Waas JR, Molan PC: The effects of long-term honey, sucrose or sugar-free diets on memory and anxiety in rats. Physiology & Behavior 2009, 97(3–4):359-368.
  • [45]Mancuso DJ, Sims HF, Yang K, Kiebish MA, Su X, Jenkins CM, Guan S, Moon SH, Pietka T, Nassir F, et al.: Genetic ablation of calcium-independent phospholipase A2gamma prevents obesity and insulin resistance during high fat feeding by mitochondrial uncoupling and increased adipocyte fatty acid oxidation. J Biol Chem 2010, 285(47):36495-36510.
  • [46]Han MS, Lim YM, Quan W, Kim JR, Chung KW, Kang M, Kim S, Park SY, Han JS, Cheon HG, et al.: Lysophosphatidylcholine as an effector of fatty acid-induced insulin resistance. J Lipid Res 2011, 52(6):1234-1246.
  • [47]Kellom M, Basselin M, Keleshian VL, Chen M, Rapoport SI, Rao JS: Dose-dependent changes in neuroinflammatory and arachidonic acid cascade markers with synaptic marker loss in rat lipopolysaccharide infusion model of neuroinflammation. BMC Neurosci 2012, 13(1):50. BioMed Central Full Text
  • [48]Kim HW, Chang YC, Chen M, Rapoport SI, Rao JS: Chronic NMDA administration to rats increases brain pro-apoptotic factors while decreasing anti-Apoptotic factors and causes cell death. BMC Neurosci 2009, 10:123. BioMed Central Full Text
  • [49]Rao JS, Ertley RN, Rapoport SI, Bazinet RP, Lee HJ: Chronic NMDA administration to rats up-regulates frontal cortex cytosolic phospholipase A2 and its transcription factor, activator protein-2. J Neurochem 2007, 102(6):1918-1927.
  • [50]Pagliassotti MJ, Prach PA, Koppenhafer TA, Pan DA: Changes in insulin action, triglycerides, and lipid composition during sucrose feeding in rats. Am J Physiol 1996, 271(5 Pt 2):R1319-R1326.
  • [51]Pagliassotti MJ, Prach PA: Quantity of sucrose alters the tissue pattern and time course of insulin resistance in young rats. Am J Physiol 1995, 269(3 Pt 2):R641-R646.
  • [52]Chicco A, D’Alessandro ME, Karabatas L, Pastorale C, Basabe JC, Lombardo YB: Muscle lipid metabolism and insulin secretion are altered in insulin-resistant rats fed a high sucrose diet. J Nutrition 2003, 133(1):127-133.
  • [53]Sharma S, Zhuang Y, Gomez-Pinilla F: High-fat diet transition reduces brain DHA levels associated with altered brain plasticity and behaviour. Sci Rep 2012, 2:431.
  • [54]Hatanpaa K, Isaacs KR, Shirao T, Brady DR, Rapoport SI: Loss of proteins regulating synaptic plasticity in normal aging of the human brain and in Alzheimer disease. J Neuropathol Exp Neurol 1999, 58(6):637-643.
  • [55]Rao JS, Kellom M, Kim HW, Rapoport SI, Reese EA: Neuroinflammation and synaptic loss. Neurochem Res 2012, 37(5):903-910.
  • [56]Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC: Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28(7):412-419.
  • [57]Lin LL, Wartmann M, Lin AY, Knopf JL, Seth A, Davis RJ: cPLA2 is phosphorylated and activated by MAP kinase. Cell 1993, 72(2):269-278.
  • [58]Xing M, Insel PA: Protein kinase C-dependent activation of cytosolic phospholipase A2 and mitogen-activated protein kinase by alpha 1-adrenergic receptors in Madin-Darby canine kidney cells. J Clin Invest 1996, 97(5):1302-1310.
  • [59]Deutsch J, Rapoport SI, Purdon AD: Relation between free fatty acid and acyl-CoA concentrations in rat brain following decapitation. Neurochem Res 1997, 22(7):759-765.
  • [60]Karmi A, Iozzo P, Viljanen A, Hirvonen J, Fielding BA, Virtanen K, Oikonen V, Kemppainen J, Viljanen T, Guiducci L, et al.: Increased brain fatty acid uptake in metabolic syndrome. Diabetes 2010, 59(9):2171-2177.
  • [61]Posey KA, Clegg DJ, Printz RL, Byun J, Morton GJ, Vivekanandan-Giri A, Pennathur S, Baskin DG, Heinecke JW, Woods SC, et al.: Hypothalamic proinflammatory lipid accumulation, inflammation, and insulin resistance in rats fed a high-fat diet. Am J Physiol Endocrinol Metab 2009, 296(5):E1003-E1012.
  • [62]Umhau JC, Zhou W, Carson RE, Rapoport SI, Polozova A, Demar J, Hussein N, Bhattacharjee AK, Ma K, Esposito G, et al.: Imaging incorporation of circulating docosahexaenoic acid into the human brain using positron emission tomography. J Lipid Res 2009, 50(7):1259-1268.
  • [63]Ramadan E, Rosa AO, Chang L, Chen M, Rapoport SI, Basselin M: Extracellular-derived calcium does not initiate in vivo neurotransmission involving docosahexaenoic acid. J Lipid Res 2010, 51(8):2334-2340.
  • [64]Shonesy BC, Thiruchelvam K, Parameshwaran K, Rahman EA, Karuppagounder SS, Huggins KW, Pinkert CA, Amin R, Dhanasekaran M, Suppiramaniam V: Central insulin resistance and synaptic dysfunction in intracerebroventricular-streptozotocin injected rodents. Neurobiol Aging 2012, 33(2):430 e435-418.
  • [65]Farooqui AA, Farooqui T, Panza F, Frisardi V: Metabolic syndrome as a risk factor for neurological disorders. Cell Mol Life Sci: CMLS 2012, 69(5):741-762.
  • [66]Striggow F, Ehrlich BE: Regulation of intracellular calcium release channel function by arachidonic acid and leukotriene B4. Biochem Biophys Res Commun 1997, 237(2):413-418.
  • [67]Gharib SA, Khalyfa A, Abdelkarim A, Bhushan B, Gozal D: Integrative miRNA-mRNA Profiling of Adipose Tissue Unravels Transcriptional Circuits Induced by Sleep Fragmentation. PLoS One 2012, 7(5):e37669.
  • [68]Kanitz A, Gerber AP: Circuitry of mRNA regulation. Wiley Interdiscip Rev Syst Biol Med 2010, 2(2):245-251.
  • [69]McCall CE, El Gazzar M, Liu T, Vachharajani V, Yoza B: Epigenetics, bioenergetics, and microRNA coordinate gene-specific reprogramming during acute systemic inflammation. J Leukoc Biol 2011, 90(3):439-446.
  • [70]Garrido R, Springer JE, Hennig B, Toborek M: Nicotine attenuates arachidonic acid-induced apoptosis of spinal cord neurons by preventing depletion of neurotrophic factors. J Neurotrauma 2003, 20(11):1201-1213.
  • [71]Toalson P, Ahmed S, Hardy T, Kabinoff G: The Metabolic Syndrome in Patients With Severe Mental Illnesses. Primary care companion to the Journal of clinical psychiatry 2004, 6(4):152-158.
  • [72]Obici S, Feng Z, Arduini A, Conti R, Rossetti L: Inhibition of hypothalamic carnitine palmitoyltransferase-1 decreases food intake and glucose production. Nature medicine 2003, 9(6):756-761.
  • [73]Mera P, Bentebibel A, Lopez-Vinas E, Cordente AG, Gurunathan C, Sebastian D, Vazquez I, Herrero L, Ariza X, Gomez-Puertas P, et al.: C75 is converted to C75-CoA in the hypothalamus, where it inhibits carnitine palmitoyltransferase 1 and decreases food intake and body weight. Biochem Pharmacol 2009, 77(6):1084-1095.
  • [74]Farias SE, Basselin M, Chang L, Heidenreich KA, Rapoport SI, Murphy RC: Formation of eicosanoids, E2/D2 isoprostanes, and docosanoids following decapitation-induced ischemia, measured in high-energy-microwaved rat brain. J Lipid Res 2008, 49(9):1990-2000.
  • [75]Reeves PG, Nielsen FH, Fahey GC Jr: AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J Nutrition 1993, 123(11):1939-1951.
  • [76]Igarashi M, Ma K, Chang L, Bell JM, Rapoport SI: Dietary n-3 PUFA deprivation for 15 weeks upregulates elongase and desaturase expression in rat liver but not brain. J Lipid Res 2007, 48(11):2463-2470.
  • [77]Mariotti F, Hermier D, Sarrat C, Magne J, Fenart E, Evrard J, Tome D, Huneau JF: Rapeseed protein inhibits the initiation of insulin resistance by a high-saturated fat, high-sucrose diet in rats. Br J Nutr 2008, 100(5):984-991.
  • [78]Szeto IM, Aziz A, Das PJ, Taha AY, Okubo N, Reza-Lopez S, Giacca A, Anderson GH: High multivitamin intake by Wistar rats during pregnancy results in increased food intake and components of the metabolic syndrome in male offspring. Am J Physiol Regul Integr Comp Physiol 2008, 295(2):R575-R582.
  • [79]Folch J, Lees M, Sloane Stanley GH: A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 1957, 226:497-509.
  • [80]Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods 2001, 25(4):402-408.
  • [81]Bradford MM: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976, 72:248-254.
  • [82]Radin NS: Extraction of tissue lipids with a solvent of low toxicity. Methods Enzymol 1981, 72:5-7.
  文献评价指标  
  下载次数:35次 浏览次数:6次