期刊论文详细信息
BMC Genomics
Six newly sequenced chloroplast genomes from prasinophyte green algae provide insights into the relationships among prasinophyte lineages and the diversity of streamlined genome architecture in picoplanktonic species
Monique Turmel1  Christian Otis1  Claude Lemieux1 
[1] Institut de biologie intégrative et des systèmes, Département de biochimie, de microbiologie et de bio-informatique, Université Laval, Québec, QC G1V 0A6, Canada
关键词: trans-spliced group II intron;    Genome reduction;    Phylogenomics;    Plastid genome;    Nephroselmis;    Picoplanktonic algae;    Picocystis;    Prasinococcales;    Prasinophytes;    Viridiplantae;   
Others  :  1136339
DOI  :  10.1186/1471-2164-15-857
 received in 2014-04-28, accepted in 2014-09-25,  发布年份 2014
PDF
【 摘 要 】

Background

Because they represent the earliest divergences of the Chlorophyta, the morphologically diverse unicellular green algae making up the prasinophytes hold the key to understanding the nature of the first viridiplants and the evolutionary patterns that accompanied the radiation of chlorophytes. Nuclear-encoded 18S rDNA phylogenies unveiled nine prasinophyte clades (clades I through IX) but their branching order is still uncertain. We present here the newly sequenced chloroplast genomes of Nephroselmis astigmatica (clade III) and of five picoplanktonic species from clade VI (Prasinococcus sp. CCMP 1194, Prasinophyceae sp. MBIC 106222 and Prasinoderma coloniale) and clade VII (Picocystis salinarum and Prasinophyceae sp. CCMP 1205). These chloroplast DNAs (cpDNAs) were compared with those of the six previously sampled prasinophytes (clades I, II, III and V) in order to gain information both on the relationships among prasinophyte lineages and on chloroplast genome evolution.

Results

Varying from 64.3 to 85.6 kb in size and encoding 100 to 115 conserved genes, the cpDNAs of the newly investigated picoplanktonic species are substantially smaller than those observed for larger-size prasinophytes, are economically packed and contain a reduced gene content. Although the Nephroselmis and Picocystis cpDNAs feature a large inverted repeat encoding the rRNA operon, gene partitioning among the single copy regions is remarkably different. Unexpectedly, we found that all three species from clade VI (Prasinococcales) harbor chloroplast genes not previously documented for chlorophytes (ndhJ, rbcR, rpl21, rps15, rps16 and ycf66) and that Picocystis contains a trans-spliced group II intron. The phylogenies inferred from cpDNA-encoded proteins are essentially congruent with 18S rDNA trees, resolving with robust support all six examined prasinophyte lineages, with the exception of the Pycnococcaceae.

Conclusions

Our results underscore the high variability in genome architecture among prasinophyte lineages, highlighting the strong pressure to maintain a small and compact chloroplast genome in picoplanktonic species. The unique set of six chloroplast genes found in the Prasinococcales supports the ancestral status of this lineage within the prasinophytes. The widely diverging traits uncovered for the clade-VII members (Picocystis and Prasinophyceae sp. CCMP 1205) are consistent with their resolution as separate lineages in the chloroplast phylogeny.

【 授权许可】

   
2014 Lemieux et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150312053515991.pdf 2506KB PDF download
Figure 8. 66KB Image download
Figure 7. 97KB Image download
Figure 6. 94KB Image download
Figure 5. 207KB Image download
Figure 4. 210KB Image download
Figure 3. 122KB Image download
Figure 2. 80KB Image download
Figure 1. 89KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

【 参考文献 】
  • [1]Leliaert F, Smith DR, Moreau H, Herron MD, Verbruggen H, Delwiche CF, De Clerck O: Phylogeny and molecular evolution of the green algae. CRC Crit Rev Plant Sci 2012, 31:1-46.
  • [2]Leliaert F, Verbruggen H, Zechman FW: Into the deep: new discoveries at the base of the green plant phylogeny. Bioessays 2011, 33(9):683-692.
  • [3]Lewis LA, McCourt RM: Green algae and the origin of land plants. Am J Bot 2004, 91(10):1535-1556.
  • [4]Mattox KR, Stewart KD: Classification of the green algae: a concept based on comparative cytology. In The Systematics of the Green Algae. Edited by Irvine DEG, John DM. London: Academic Press; 1984:29-72.
  • [5]Latasa M, Scharek R, Le Gall F, Guillou L: Pigment suites and taxonomic groups in Prasinophyceae. J Phycol 2004, 40(6):1149-1155.
  • [6]Melkonian M: Phylum Chlorophyta. Class Prasinophyceae. In Handbook of Protoctista the Structure, Cultivation, Habitats and Life Histories of the Eukaryotic Microorganisms and their Descendants Exclusive of Animals, Plants and Fungi. Edited by Margulis L, Corliss JO, Melkonian M, Chapman DJ. Boston: Jones and Bartlett Publishers; 1990:600-607.
  • [7]O’Kelly CJ: Flagellar apparatus architecture and the phylogeny of “green algae”: chlorophytes, euglenoids, glaucophytes. In The Cytoskeleton of the Algae. Edited by Menzel D. Boca Raton: CRC Press; 1992:315-345.
  • [8]Sym SD, Pienaar RN: The class Prasinophyceae. In Progress Phycol Res, Volume 9. Edited by Round FE, Chapman DJ. Bristol: Biopress Ltd; 1993:281-376.
  • [9]Chrétiennot-Dinet MJ, Courties C, Vaquer A, Neveux J, Claustre H, Lautier J, Machado MC: A new marine picoeucaryote: Ostreococcus tauri gen. et sp. nov. (Chlorophyta, Prasinophyceae). Phycologia 1995, 34(4):285-292.
  • [10]Courties C, Vaquer A, Troussellier M, Lautier J, Chretiennot-Dinet MJ, Neveux J, Machado C, Claustre H: Smallest eukaryotic organism. Nature 1994, 370(6487):255-255.
  • [11]Fawley MW, Yun Y, Qin M: Phylogenetic analyses of 18S rDNA sequences reveal a new coccoid lineage of the Prasinophyceae (Chlorophyta). J Phycol 2000, 36(2):387-393.
  • [12]Guillou L, Eikrem W, Chrétiennot-Dinet M-J, Le Gall F, Massana R, Romari K, Pedrós-Alió C, Vaulot D: Diversity of picoplanktonic prasinophytes assessed by direct nuclear SSU rDNA sequencing of environmental samples and novel isolates retrieved from oceanic and coastal marine ecosystems. Protist 2004, 155:193-214.
  • [13]Nakayama T, Marin B, Kranz HD, Surek B, Huss VAR, Inouye I, Melkonian M: The basal position of scaly green flagellates among the green algae (Chlorophyta) is revealed by analyses of nuclear-encoded SSU rRNA sequences. Protist 1998, 149:367-380.
  • [14]Viprey M, Guillou L, Ferreol M, Vaulot D: Wide genetic diversity of picoplanktonic green algae (Chloroplastida) in the Mediterranean Sea uncovered by a phylum-biased PCR approach. Environ Microbiol 2008, 10(7):1804-1822.
  • [15]Marin B, Melkonian M: Molecular phylogeny and classification of the Mamiellophyceae class. nov. (Chlorophyta) based on sequence comparisons of the nuclear- and plastid-encoded rRNA operons. Protist 2010, 161(2):304-336.
  • [16]Cavalier-Smith T: The origin, losses and gains of Chloroplasts. In Origins of Plastids. Edited by Lewin RA. US: Springer; 1993:291-348.
  • [17]Massjuk N: Chlorodendrophyceae class. nov. (Chlorophyta, Viridiplantae) in the Ukrainian flora: I. The volume, phylogenetic relations and taxonomical status. Ukr Bot J 2006, 63:601-614.
  • [18]Raven J: Picophytoplankton. Progress Phycol Res 1999, 13:33-106.
  • [19]Brouard JS, Otis C, Lemieux C, Turmel M: The exceptionally large chloroplast genome of the green alga Floydiella terrestris illuminates the evolutionary history of the Chlorophyceae. Genome Biol Evol 2010, 2:240-256.
  • [20]Grewe F, Guo W, Gubbels EA, Hansen AK, Mower JP: Complete plastid genomes from Ophioglossum californicum, Psilotum nudum, and Equisetum hyemale reveal an ancestral land plant genome structure and resolve the position of Equisetales among monilophytes. BMC Evol Biol 2013, 13:8. BioMed Central Full Text
  • [21]Jansen RK, Cai Z, Raubeson LA, Daniell H, Depamphilis CW, Leebens-Mack J, Muller KF, Guisinger-Bellian M, Haberle RC, Hansen AK, Chumley TW, Lee SB, Peery R, McNeal JR, Kuehl JV, Boore JL: Analysis of 81 genes from 64 plastid genomes resolves relationships in angiosperms and identifies genome-scale evolutionary patterns. Proc Natl Acad Sci U S A 2007, 104(49):19369-19374.
  • [22]Lemieux C, Otis C, Turmel M: A clade uniting the green algae Mesostigma viride and Chlorokybus atmophyticus represents the deepest branch of the Streptophyta in chloroplast genome-based phylogenies. BMC Biol 2007, 5:2. BioMed Central Full Text
  • [23]Qiu YL, Li LB, Wang B, Chen ZD, Knoop V, Groth-Malonek M, Dombrovska O, Lee J, Kent L, Rest J, Estabrook GF, Hendry TA, Taylor DW, Testa CM, Ambros M, Crandall-Stotler B, Duff RJ, Stech M, Frey W, Quandt D, Davis CC: The deepest divergences in land plants inferred from phylogenomic evidence. Proc Natl Acad Sci U S A 2006, 103(42):15511-15516.
  • [24]Turmel M, Brouard JS, Gagnon C, Otis C, Lemieux C: Deep division in the Chlorophyceae (Chlorophyta) revealed by chloroplast phylogenomic analyses. J Phycol 2008, 44(3):739-750.
  • [25]Turmel M, Gagnon MC, O’Kelly CJ, Otis C, Lemieux C: The chloroplast genomes of the green algae Pyramimonas, Monomastix, and Pycnococcus shed new light on the evolutionary history of prasinophytes and the origin of the secondary chloroplasts of euglenids. Mol Biol Evol 2009, 26(3):631-648.
  • [26]Worden AZ, J-h L, Mock T, Rouzé P, Simmons MP, Aerts AL, Allen AE, Cuvelier ML, Derelle E, Everett MV, Foulon E, Grimwood J, Gundlach H, Henrissat B, Napoli C, Badger JH, Coutinho PM, Demir E, Dubchak I, Gentemann C, Eikrem W, Gready JE, John U, Lanier W, Lindquist EA, Panaud O, Pangilinan J, Paulsen I, Piegu B, Poliakov A: Green evolution and dynamic adaptations revealed by genomes of the marine picoeukaryotes Micromonas. Science 2009, 324:268-272.
  • [27]Robbens S, Derelle E, Ferraz C, Wuyts J, Moreau H, Van de Peer Y: The complete chloroplast and mitochondrial DNA sequence of Ostreococcus tauri: organelle genomes of the smallest eukaryote are examples of compaction. Mol Biol Evol 2007, 24:956-968.
  • [28]Turmel M, Otis C, Lemieux C: The complete chloroplast DNA sequence of the green alga Nephroselmis olivacea: insights into the architecture of ancestral chloroplast genomes. Proc Natl Acad Sci U S A 1999, 96:10248-10253.
  • [29]Nakayama T, Suda S, Kawachi M, Inouye I: Phylogeny and ultrastructure of Nephroselmis and Pseudoscourfieldia (Chlorophyta), including the description of Nephroselmis anterostigmatica sp. nov. and a proposal for the Nephroselmidales ord. nov. Phycologia 2007, 46(6):680-697.
  • [30]Cox CJ, Li B, Foster PG, Embley TM, Civan P: Conflicting phylogenies for early land plants are caused by composition biases among synonymous substitutions. Syst Biol 2014, 63(2):272-279.
  • [31]Li B, Lopes JS, Foster PG, Embley TM, Cox CJ: Compositional biases among synonymous substitutions cause conflict between gene and protein trees for plastid origins. Mol Biol Evol 2014, 31(7):1697-1709.
  • [32]Rota-Stabelli O, Lartillot N, Philippe H, Pisani D: Serine codon-usage bias in deep phylogenomics: pancrustacean relationships as a case study. Syst Biol 2013, 62(1):121-133.
  • [33]Lartillot N, Brinkmann H, Philippe H: Suppression of long-branch attraction artefacts in the animal phylogeny using a site-heterogeneous model. BMC Evol Biol 2007, 7(Suppl 1):S4. BioMed Central Full Text
  • [34]Lartillot N, Philippe H: A Bayesian mixture model for across-site heterogeneities in the amino-acid replacement process. Mol Biol Evol 2004, 21(6):1095-1109.
  • [35]Philippe H, Brinkmann H, Copley RR, Moroz LL, Nakano H, Poustka AJ, Wallberg A, Peterson KJ, Telford MJ: Acoelomorph flatworms are deuterostomes related to Xenoturbella. Nature 2011, 470(7333):255-260.
  • [36]Philippe H, Brinkmann H, Lavrov DV, Littlewood DTJ, Manuel M, Worheide G, Baurain D: Resolving difficult phylogenetic questions: why more sequences are not enough. PLos Biol 2011, 9(3):e1000602.
  • [37]Smith DR, Burki F, Yamada T, Grimwood J, Grigoriev IV, Van Etten JL, Keeling PJ: The GC-rich mitochondrial and plastid genomes of the green alga Coccomyxa give insight into the evolution of organelle DNA nucleotide landscape. PLoS One 2011, 6(8):e23624.
  • [38]Marin B: Nested in the Chlorellales or independent class? Phylogeny and classification of the Pedinophyceae (Viridiplantae) revealed by molecular phylogenetic analyses of complete nuclear and plastid-encoded rRNA operons. Protist 2012, 163(5):778-805.
  • [39]Le SQ, Dang CC, Gascuel O: Modeling protein evolution with several amino acid replacement matrices depending on site rates. Mol Biol Evol 2012, 29(10):2921-2936.
  • [40]Cox CJ, Foster PG: A 20-state empirical amino-acid substitution model for green plant chloroplasts. Mol Phylogenet Evol 2013, 68(2):218-220.
  • [41]Felsenstein J: Cases in which parsimony or compatibility methods will be positively misleading. Syst Zool 1978, 27(4):401-410.
  • [42]Kumar AM, Schaub U, Söll D, Ujwal ML: Glutamyl-transfer RNA: at the crossroad between chlorophyll and protein biosynthesis. Trends Plant Sci 1996, 1(11):371-376.
  • [43]de Cambiaire JC, Otis C, Lemieux C, Turmel M: The complete chloroplast genome sequence of the chlorophycean green alga Scenedesmus obliquus reveals a compact gene organization and a biased distribution of genes on the two DNA strands. BMC Evol Biol 2006, 6:37. BioMed Central Full Text
  • [44]Lemieux C, Otis C, Turmel M: Ancestral chloroplast genome in Mesostigma viride reveals an early branch of green plant evolution. Nature 2000, 403(6770):649-652.
  • [45]Goulding SE, Olmstead RG, Morden CW, Wolfe KH: Ebb and flow of the chloroplast inverted repeat. Mol Gen Genet 1996, 252(1–2):195-206.
  • [46]Turmel M, Otis C, Lemieux C: The chloroplast genomes of the green algae Pedinomonas minor, Parachlorella kessleri, and Oocystis solitaria reveal a shared ancestry between the Pedinomonadales and Chlorellales. Mol Biol Evol 2009, 26(10):2317-2331.
  • [47]Turmel M, Otis C, Lemieux C: The complete chloroplast DNA sequences of the charophycean green algae Staurastrum and Zygnema reveal that the chloroplast genome underwent extensive changes during the evolution of the Zygnematales. BMC Biol 2005, 3:22. BioMed Central Full Text
  • [48]Turmel M, Otis C, Lemieux C: The chloroplast genome sequence of Chara vulgaris sheds new light into the closest green algal relatives of land plants. Mol Biol Evol 2006, 23(6):1324-1338.
  • [49]Michel F, Ferat J: Structure and activities of group II introns. Annu Rev Biochem 1995, 64(1):435-461.
  • [50]Turmel M, Otis C, Lemieux C: The chloroplast and mitochondrial genome sequences of the charophyte Chaetosphaeridium globosum: insights into the timing of the events that restructured organelle DNAs within the green algal lineage that led to land plants. Proc Natl Acad Sci U S A 2002, 99(17):11275-11280.
  • [51]Bélanger AS, Brouard JS, Charlebois P, Otis C, Lemieux C, Turmel M: Distinctive architecture of the chloroplast genome in the chlorophycean green alga Stigeoclonium helveticum. Mol Genet Genomics 2006, 276(5):464-477.
  • [52]Brouard JS, Otis C, Lemieux C, Turmel M: Chloroplast DNA sequence of the green alga Oedogonium cardiacum (Chlorophyceae): unique genome architecture, derived characters shared with the Chaetophorales and novel genes acquired through horizontal transfer. BMC Genomics 2008, 9:290. BioMed Central Full Text
  • [53]Kück U, Choquet Y, Schneider M, Dron M, Bennoun P: Structural and transcription analysis of two homologous genes for the P700 chlorophyll a-apoproteins in Chlamydomonas reinhardii: evidence for in vivo trans-splicing. EMBO J 1987, 6:2185-2195.
  • [54]Glanz S, Kück U: Trans-splicing of organelle introns - a detour to continuous RNAs. Bioessays 2009, 31(9):921-934.
  • [55]Pombert JF, Otis C, Turmel M, Lemieux C: The mitochondrial genome of the prasinophyte Prasinoderma coloniale reveals two trans-spliced group I introns in the large subunit rRNA gene. PLoS One 2013, 8(12):e84325.
  • [56]Bonen L: Evolution of mitochondrial introns in plants and photosynthetic microbes. Adv Bot Res 2012, 63:155-186.
  • [57]Biological Resource Center of the National Institute of Technology and Evaluation http://www.nbrc.nite.go.jp/e/ webcite
  • [58]Keller MD, Seluin RC, Claus W, Guillard RRL: Media for the culture of oceanic ultraphytoplankton. J Phycol 1987, 23:633-638.
  • [59]Turmel M, Lemieux C, Burger G, Lang BF, Otis C, Plante I, Gray MW: The complete mitochondrial DNA sequences of Nephroselmis olivacea and Pedinomonas minor. Two radically different evolutionary patterns within green algae. Plant Cell 1999, 11:1717-1730.
  • [60]Matsumoto T, Shinozaki F, Chikuni T, Yabuki A, Takishita K, Kawachi M, Nakayama T, Inouye I, Hashimoto T, Inagaki Y: Green-colored plastids in the dinoflagellate genus Lepidodinium are of core chlorophyte origin. Protist 2011, 162(2):268-276.
  • [61]Gordon D, Abajian C, Green P: Consed: a graphical tool for sequence finishing. Genome Res 1998, 8:195-202.
  • [62]Boisvert S, Laviolette F, Corbeil J: Ray: simultaneous assembly of reads from a mix of high-throughput sequencing technologies. J Comput Biol 2010, 17(11):1519-1533.
  • [63]Pombert JF, Otis C, Lemieux C, Turmel M: The chloroplast genome sequence of the green alga Pseudendoclonium akinetum (Ulvophyceae) reveals unusual structural features and new insights into the branching order of chlorophyte lineages. Mol Biol Evol 2005, 22(9):1903-1918.
  • [64]Lagesen K, Hallin P, Rodland EA, Staerfeldt HH, Rognes T, Ussery DW: RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 2007, 35(9):3100-3108.
  • [65]Lowe TM, Eddy SR: tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 1997, 25(5):955-964.
  • [66]Michel F, Umesono K, Ozeki H: Comparative and functional anatomy of group II catalytic introns - a review. Gene 1989, 82(1):5-30.
  • [67]Michel F, Westhof E: Modelling of the three-dimensional architecture of group I catalytic introns based on comparative sequence analysis. J Mol Biol 1990, 216:585-610.
  • [68]Lohse M, Drechsel O, Bock R: OrganellarGenomeDRAW (OGDRAW): a tool for the easy generation of high-quality custom graphical maps of plastid and mitochondrial genomes. Curr Genet 2007, 52:267-274.
  • [69]Kurtz S, Choudhuri JV, Ohlebusch E, Schleiermacher C, Stoye J, Giegerich R: REPuter: the manifold applications of repeat analysis on a genomic scale. Nucleic Acids Res 2001, 29:4633-4642.
  • [70]Repeat Masker http://www.repeatmasker.org/ webcite
  • [71]Cross match http://www.phrap.org/phredphrapconsed.html webcite
  • [72]Edgar RC: MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004, 32(5):1792-1797.
  • [73]Capella-Gutierrez S, Silla-Martinez JM, Gabaldon T: trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 2009, 25(15):1972-1973.
  • [74]Lartillot N, Lepage T, Blanquart S: PhyloBayes 3: a Bayesian software package for phylogenetic reconstruction and molecular dating. Bioinformatics 2009, 25(17):2286-2288.
  • [75]Felsenstein J: PHYLIP - phylogeny inference package (version 3.2). Cladistics 1989, 5(2):164-166.
  • [76]Stamatakis A: RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 2006, 22(21):2688-2690.
  • [77]Lemieux C, Otis C, Turmel M: Data from: Six newly sequenced chloroplast genomes from prasinophyte green algae provide insights into the relationships among prasinophyte lineages and the diversity of streamlined genome architecture in picoplanktonic species. TreeBase repositoryhttp://purl.org/phylo/treebase/phylows/study/TB2:S16332 webcite
  文献评价指标  
  下载次数:33次 浏览次数:5次