期刊论文详细信息
BMC Evolutionary Biology
Chloroplast phylogenomic analysis resolves deep-level relationships within the green algal class Trebouxiophyceae
Monique Turmel1  Christian Otis1  Claude Lemieux1 
[1] Département de Biochimie, de Microbiologie et de Bio-informatique, Institut de Biologie Intégrative et des Systèmes, Université Laval, 1030 avenue de la Medicine, Pavillon Marchand, Québec, G1V 0A6, Canada
关键词: Phylogenomics;    Plastid genome;    Trebouxiophyceae;    Chlorophyta;   
Others  :  1117924
DOI  :  10.1186/s12862-014-0211-2
 received in 2014-07-24, accepted in 2014-09-24,  发布年份 2014
PDF
【 摘 要 】

Background

The green algae represent one of the most successful groups of photosynthetic eukaryotes, but compared to their land plant relatives, surprisingly little is known about their evolutionary history. This is in great part due to the difficulty of recognizing species diversity behind morphologically similar organisms. The Trebouxiophyceae is a species-rich class of the Chlorophyta that includes symbionts (e.g. lichenized algae) as well as free-living green algae. Members of this group display remarkable ecological variation, occurring in aquatic, terrestrial and aeroterrestrial environments. Because a reliable backbone phylogeny is essential to understand the evolutionary history of the Trebouxiophyceae, we sought to identify the relationships among the major trebouxiophycean lineages that have been previously recognized in nuclear-encoded 18S rRNA phylogenies. To this end, we used a chloroplast phylogenomic approach.

Results

We determined the sequences of 29 chlorophyte chloroplast genomes and assembled amino acid and nucleotide data sets derived from 79 chloroplast genes of 61 chlorophytes, including 35 trebouxiophyceans. The amino acid- and nucleotide-based phylogenies inferred using maximum likelihood and Bayesian methods and various models of sequence evolution revealed essentially the same relationships for the trebouxiophyceans. Two major groups were identified: a strongly supported clade of 29 taxa (core trebouxiophyceans) that is sister to the Chlorophyceae + Ulvophyceae and a clade comprising the Chlorellales and Pedinophyceae that represents a basal divergence relative to the former group. The core trebouxiophyceans form a grade of strongly supported clades that include a novel lineage represented by the desert crust alga Pleurastrosarcina brevispinosa. The assemblage composed of the Oocystis and Geminella clades is the deepest divergence of the core trebouxiophyceans. Like most of the chlorellaleans, early-diverging core trebouxiophyceans are predominantly planktonic species, whereas core trebouxiophyceans occupying more derived lineages are mostly terrestrial or aeroterrestrial algae.

Conclusions

Our phylogenomic study provides a solid foundation for addressing fundamental questions related to the biology and ecology of the Trebouxiophyceae. The inferred trees reveal that this class is not monophyletic; they offer new insights not only into the internal structure of the class but also into the lifestyle of its founding members and subsequent adaptations to changing environments.

【 授权许可】

   
2014 Lemieux et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150206012924909.pdf 1477KB PDF download
Figure 4. 87KB Image download
Figure 3. 103KB Image download
Figure 2. 35KB Image download
Figure 1. 94KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Leliaert F, Smith DR, Moreau H, Herron MD, Verbruggen H, Delwiche CF, De Clerck O: Phylogeny and molecular evolution of the green algae. CRC Crit Rev Plant Sci 2012, 31:1-46.
  • [2]Ruhfel BR, Gitzendanner MA, Soltis PS, Soltis DE, Burleigh JG: From algae to angiosperms-inferring the phylogeny of green plants (Viridiplantae) from 360 plastid genomes. BMC Evol Biol 2014, 14:23. BioMed Central Full Text
  • [3]Mattox KR, Stewart KD: Classification of the Green Algae: A Concept Based on Comparative Cytology. In The Systematics of the Green Algae. Edited by Irvine DEG, John DM. Academic Press, London; 1984:29-72.
  • [4]O’Kelly CJ, Floyd GL: Flagellar apparatus absolute orientations and the phylogeny of the green algae. Biosystems 1984, 16(3–4):227-251.
  • [5]Lewis LA, McCourt RM: Green algae and the origin of land plants. Am J Bot 2004, 91(10):1535-1556.
  • [6]Pröschold T, Leliaert F: Systematics of the Green Algae: Conflict of Classic and Modern Approaches. In Unravelling the Algae.: CRC Press; 2007:123–153.
  • [7]Friedl T, Rybalka N: Systematics of the Green Algae: A Brief Introduction to the Current Status. In Progress in Botany 73. Edited by Luttge U, Beyschlag W, Budel B, Francis D. Springer-Verlag Berlin, Heidelberger Platz 3, D-14197 Berlin, Germany; 2012:259-280.
  • [8]Viprey M, Guillou L, Ferreol M, Vaulot D: Wide genetic diversity of picoplanktonic green algae (Chloroplastida) in the Mediterranean Sea uncovered by a phylum-biased PCR approach. Environ Microbiol 2008, 10(7):1804-1822.
  • [9]Huss VAR, Frank C, Hartmann EC, Hirmer M, Kloboucek A, Seidel BM, Wenzeler P, Kessler E: Biochemical taxonomy and molecular phylogeny of the genus Chlorella sensu lato (Chlorophyta). J Phycol 1999, 35(3):587-598.
  • [10]Luo W, Pröschold T, Bock C, Krienitz L: Generic concept in Chlorella-related coccoid green algae (Chlorophyta, Trebouxiophyceae). Plant Biology (Stuttgart) 2010, 12(3):545-553.
  • [11]Philippe H, Telford MJ: Large-scale sequencing and the new animal phylogeny. Trends Ecol Evol 2006, 21(11):614-620.
  • [12]Lemieux C, Otis C, Turmel M: Six newly sequenced chloroplast genomes from prasinophyte green algae provide insights into the relationships among prasinophyte lineages and the diversity of streamlined genome architecture in picoplanktonic species.BMC Genomics 2014, Accepted for publication on 25 September 2014.
  • [13]Turmel M, Gagnon MC, O’Kelly CJ, Otis C, Lemieux C: The chloroplast genomes of the green algae Pyramimonas, Monomastix, and Pycnococcus shed new light on the evolutionary history of prasinophytes and the origin of the secondary chloroplasts of euglenids. Mol Biol Evol 2009, 26(3):631-648.
  • [14]Civan P, Foster PG, Embley MT, Seneca A, Cox CJ: Analyses of charophyte chloroplast genomes help characterize the ancestral chloroplast genome of land plants. Genome Biol Evol 2014, 6(4):897-911.
  • [15]Lemieux C, Otis C, Turmel M: A clade uniting the green algae Mesostigma viride and Chlorokybus atmophyticus represents the deepest branch of the Streptophyta in chloroplast genome-based phylogenies. BMC Biol 2007, 5:2. BioMed Central Full Text
  • [16]Turmel M, Otis C, Lemieux C: The chloroplast genome sequence of Chara vulgaris sheds new light into the closest green algal relatives of land plants. Mol Biol Evol 2006, 23(6):1324-1338.
  • [17]Turmel M, Pombert JF, Charlebois P, Otis C, Lemieux C: The green algal ancestry of land plants as revealed by the chloroplast genome. Int J Plant Sci 2007, 168(5):679-689.
  • [18]Zhong B, Xi Z, Goremykin VV, Fong R, McLenachan PA, Novis PM, Davis CC, Penny D: Streptophyte algae and the origin of land plants revisited using heterogeneous models with three new algal chloroplast genomes. Mol Biol Evol 2014, 31(1):177-183.
  • [19]Brouard JS, Otis C, Lemieux C, Turmel M: The exceptionally large chloroplast genome of the green alga Floydiella terrestris illuminates the evolutionary history of the Chlorophyceae. Genome Biol Evol 2010, 2:240-256.
  • [20]Turmel M, Brouard JS, Gagnon C, Otis C, Lemieux C: Deep division in the Chlorophyceae (Chlorophyta) revealed by chloroplast phylogenomic analyses. J Phycol 2008, 44(3):739-750.
  • [21]Cocquyt E, Verbruggen H, Leliaert F, De Clerck O: Evolution and cytological diversification of the green seaweeds (Ulvophyceae). Mol Biol Evol 2010, 27(9):2052-2061.
  • [22]Fučíková K, Lewis PO, Lewis LA: Putting incertae sedis taxa in their place: a proposal for ten new families and three new genera in Sphaeropleales (Chlorophyceae, Chlorophyta). J Phycol 2014, 50(1):14-25.
  • [23]Friedl T: Inferring taxonomic positions and testing genus level assignments in coccoid green lichen algae: a phylogenetic analysis of 18S ribosomal RNA sequences from Dictyochloropsis reticulata and from members of the genus Myrmecia (Chlorophyta, Trebouxiophyceae cl. nov.). J Phycol 1995, 31(4):632-639.
  • [24]Friedl T, Büdel B: Photobionts. In Lichen Biology. 2nd edition. Edited by Nash TI. Cambridge University Press, Cambridge; 2008:9-26.
  • [25]Pérez-Ortega S, Ríos A, Crespo A, Sancho LG: Symbiotic lifestyle and phylogenetic relationships of the bionts of Mastodia tessellata (Ascomycota, incertae sedis). Am J Bot 2010, 97(5):738-752.
  • [26]Pröschold T, Darienko T, Silva PC, Reisser W, Krienitz L: The systematics of Zoochlorella revisited employing an integrative approach. Environ Microbiol 2011, 13(2):350-364.
  • [27]de Koning AP, Keeling PJ: The complete plastid genome sequence of the parasitic green alga Helicosporidium sp. is highly reduced and structured. BMC Biol 2006, 4:12. BioMed Central Full Text
  • [28]Pombert JF, Blouin NA, Lane C, Boucias D, Keeling PJ: A lack of parasitic reduction in the obligate parasitic green alga Helicosporidium. PLoS Genet 2014, 10(5):e1004355.
  • [29]Ueno R, Urano N, Suzuki M: Phylogeny of the non-photosynthetic green micro-algal genus Prototheca (Trebouxiophyceae, Chlorophyta) and related taxa inferred from SSU and LSU ribosomal DNA partial sequence data. FEMS Microbiol Lett 2003, 223(2):275-280.
  • [30]Hannon M, Gimpel J, Tran M, Rasala B, Mayfield S: Biofuels from algae: challenges and potential. Biofuels 2010, 1(5):763-784.
  • [31]Mata TM, Martins AA, Caetano NS: Microalgae for biodiesel production and other applications: A review. Renew Sust Energ Rev 2010, 14(1):217-232.
  • [32]Bock C, Luo W, Kusber W-H, Hegewald E, Pazoutova M, Krienitz L: Classification of crucigenoid algae: Phylogenetic position of the reinstated genus Lemmermannia, Tetrastrum spp. Crucigenia tetrapedia, and C. lauterbornii (Trebouxiophyceae, Chlorophyta). J Phycol 2013, 49(2):329-339.
  • [33]Darienko T, Gustavs L, Mudimu O, Menendez CR, Schumann R, Karsten U, Friedl T, Proeschold T: Chloroidium, a common terrestrial coccoid green alga previously assigned to Chlorella (Trebouxiophyceae, Chlorophyta). Eur J Phycol 2010, 45(1):79-95.
  • [34]Elias M, Neustupa J, Skaloud P: Elliptochloris bilobata var. corticola var. nov (Trebouxiophyceae, Chlorophyta), a novel subaerial coccal green alga. Biologia (Bratislava) 2008, 63(6):791-798.
  • [35]Karsten U, Friedl T, Schumann R, Hoyer K, Lembcke S: Mycosporine-like amino acids and phylogenies in green algae: Prasiola and its relatives from the Trebouxiophyceae (Chlorophyta). J Phycol 2005, 41(3):557-566.
  • [36]Krienitz L, Bock C, Luo W, Pröschold T: Polyphyletic origin of the Dictyosphaerium morphotype within Chlorellaceae (Trebouxiophyceae). J Phycol 2010, 46(3):559-563.
  • [37]Neustupa J, Elias M, Skaloud P, Nemcova Y, Sejnohova L: Xylochloris irregularis gen. et sp. nov. (Trebouxiophyceae, Chlorophyta), a novel subaerial coccoid green alga. Phycologia 2011, 50(1):57-66.
  • [38]Neustupa J, Nemcova Y, Vesela J, Steinova J, Skaloud P: Leptochlorella corticola gen. et sp. nov. and Kalinella apyrenoidosa sp. nov.: two novel Chlorella-like green microalgae (Trebouxiophyceae, Chlorophyta) from subaerial habitats. Int J Syst Evol Microbiol 2013, 63(Part 1):377-387.
  • [39]Sluiman HJ, Guihal C, Mudimu O: Assessing phylogenetic affinities and species delimitations in Klebsormidiales (Streptophyta): Nuclear-encoded rDNA phylogenies and its secondary structure models in Klebsormidium, Hormidiella, and Entransia. J Phycol 2008, 44(1):183-195.
  • [40]Krienitz L, Bock C: Present state of the systematics of planktonic coccoid green algae of inland waters. Hydrobiologia 2012, 698(1):295-326.
  • [41]Pröschold T, Bock C, Luo W, Krienitz L: Polyphyletic distribution of bristle formation in Chlorellaceae: Micractinium, Diacanthos, Didymogenes and Hegewaldia gen. nov. (Trebouxiophyceae, Chlorophyta). Phycol Res 2010, 58(1):1-8.
  • [42]Turmel M, Otis C, Lemieux C: The chloroplast genomes of the green algae Pedinomonas minor, Parachlorella kessleri, and Oocystis solitaria reveal a shared ancestry between the Pedinomonadales and Chlorellales. Mol Biol Evol 2009, 26(10):2317-2331.
  • [43][http://www.uni-goettingen.de/en/45175.html] webcite Culture Collection of Algae at the University of Goettingen..
  • [44][http://web.biosci.utexas.edu/utex/default.aspx] webcite The Culture Collection of Algae at The University of Texas at Austin..
  • [45][https://ncma.bigelow.org] webcite Provasoli-Guillard National Center for Marine Algae and Microbiota..
  • [46][http://mcc.nies.go.jp] webcite Microbial Culture Collection at the National Institute of Environmental Studies..
  • [47][http://botany.natur.cuni.cz/algo/caup-list.html] webcite Culture Collection of Algae of Charles University in Prague..
  • [48]Sluiman HJ, Blommers PCJ: Ultrastructure and taxonomic position of Chlorosarcina stigmatica Deason (Chlorophyceae, Chlorophyta). Arch Protistenkdr 1990, 138(3):181-190.
  • [49]Cox CJ, Li B, Foster PG, Embley TM, Civan P: Conflicting phylogenies for early land plants are caused by composition biases among synonymous substitutions. Syst Biol 2014, 63(2):272-279.
  • [50]Li B, Lopes JS, Foster PG, Embley TM, Cox CJ: Compositional biases among synonymous substitutions cause conflict between gene and protein trees for plastid origins. Mol Biol Evol 2014, 31(7):1697-1709.
  • [51]Rota-Stabelli O, Lartillot N, Philippe H, Pisani D: Serine codon-usage bias in deep phylogenomics: pancrustacean relationships as a case study. Syst Biol 2013, 62(1):121-133.
  • [52]Blanquart S, Lartillot N: A site- and time-heterogeneous model of amino acid replacement. Mol Biol Evol 2008, 25(5):842-858.
  • [53]Foster PG, Hickey DA: Compositional bias may affect both DNA-based and protein-based phylogenetic reconstructions. J Mol Evol 1999, 48(3):284-290.
  • [54]Cox CJ, Foster PG: A 20-state empirical amino-acid substitution model for green plant chloroplasts. Mol Phylogenet Evol 2013, 68(2):218-220.
  • [55]Le SQ, Dang CC, Gascuel O: Modeling protein evolution with several amino acid replacement matrices depending on site rates. Mol Biol Evol 2012, 29(10):2921-2936.
  • [56]Lartillot N, Brinkmann H, Philippe H: Suppression of long-branch attraction artefacts in the animal phylogeny using a site-heterogeneous model. BMC Evol Biol 2007, 7(Suppl 1):S4. BioMed Central Full Text
  • [57]Lartillot N, Philippe H: A Bayesian mixture model for across-site heterogeneities in the amino-acid replacement process. Mol Biol Evol 2004, 21(6):1095-1109.
  • [58]Philippe H, Brinkmann H, Copley RR, Moroz LL, Nakano H, Poustka AJ, Wallberg A, Peterson KJ, Telford MJ: Acoelomorph flatworms are deuterostomes related to Xenoturbella. Nature 2011, 470(7333):255-260.
  • [59]Philippe H, Brinkmann H, Lavrov DV, Littlewood DTJ, Manuel M, Worheide G, Baurain D: Resolving difficult phylogenetic questions: why more sequences are not enough. PLoS Biol 2011, 9(3):e1000602.
  • [60]Shimodaira H: An approximately unbiased test of phylogenetic tree selection. Syst Biol 2002, 51(3):492-508.
  • [61]Shimodaira H, Hasegawa M: CONSEL: for assessing the confidence of phylogenetic tree selection. Bioinformatics 2001, 17(12):1246-1247.
  • [62]Regier JC, Shultz JW, Zwick A, Hussey A, Ball B, Wetzer R, Martin JW, Cunningham CW: Arthropod relationships revealed by phylogenomic analysis of nuclear protein-coding sequences. Nature 2010, 463(7284):1079-1083.
  • [63]Lu F, Xu W, Tian C, Wang G, Niu J, Pan G, Hu S: The Bryopsis hypnoides plastid genome: multimeric forms and complete nucleotide sequence. PLoS One 2011, 6(2):e14663.
  • [64]Novis PM, Smissen R, Buckley TR, Gopalakrishnan K, Visnovsky G: Inclusion of chloroplast genes that have undergone expansion misleads phylogenetic reconstruction in the Chlorophyta. Am J Bot 2013, 100(11):2194-2209.
  • [65]Škaloud P, Kalina T, Nemjová K, De Clerck O, Leliaert L: Morphology and phylogenetic position of the freshwater green microalgae Chlorochytrium (Chlorophyceae) and Scotinosphaera (Scotinosphaerales, ord. nov., Ulvophyceae). J Phycol 2013, 49(1):115-129.
  • [66]Smith DR, Burki F, Yamada T, Grimwood J, Grigoriev IV, Van Etten JL, Keeling PJ: The GC-rich mitochondrial and plastid genomes of the green alga Coccomyxa give insight into the evolution of organelle DNA nucleotide landscape. PLoS One 2011, 6(8):e23624.
  • [67]Zuccarello GC, Price N, Verbruggen H, Leliaert F: Analysis of a plastid multigene data set and the phylogenetic position of the marine macroalga Caulerpa filiformis (Chlorophyta). J Phycol 2009, 45(5):1206-1212.
  • [68]Holzinger A, Karsten U: Desiccation stress and tolerance in green algae: consequences for ultrastructure, physiological and molecular mechanisms. Front Plant Sci 2013, 4:327.
  • [69]Moniz MBJ, Rindi F, Novis PM, Broady PA, Guiry MD: Molecular phylogeny of Antarctic Prasiola (Prasiolales, Trebouxiophyceae) reveals extensive cryptic diversity. J Phycol 2012, 48(4):940-955.
  • [70]Gaysina L, Nemcova Y, Skaloud P, Sevcikova T, Elias M: Chloropyrula uraliensis gen. et sp nov (Trebouxiophyceae, Chlorophyta), a new green coccoid alga with a unique ultrastructure, isolated from soil in South Urals. J Syst Evol 2013, 51(4):476-484.
  • [71]Fučíková K, Lewis PO, Lewis LA: Widespread desert affiliation of trebouxiophycean algae (Trebouxiophyceae, Chlorophyta) including discovery of three new desert genera.Phycol Res 2014, article published online on 27 August 2014 (DOI: 10.1111/pre.12062).
  • [72]Krienitz L, Bock C, Nozaki H, Wolf M: SSU rRNA gene phylogeny of morphospecies affiliated to the bioassay alga “Selenastrum capricornutum” recovered the polyphyletic origin of crescent-shaped Chlorophyta. J Phycol 2011, 47(4):880-893.
  • [73]Neustupa J, Nemcova Y, Elias M, Skaloud P: Kalinella bambusicola gen. et sp nov (Trebouxiophyceae, Chlorophyta), a novel coccoid Chlorella-like subaerial alga from Southeast Asia. Phycol Res 2009, 57(3):159-169.
  • [74]Somogyi B, Felföldi T, Solymosi K, Makk J, Homonnay ZG, Horváth G, Turcsi E, Böddi B, Márialigeti K, Vörös L: Chloroparva pannonica gen. et sp. nov. (Trebouxiophyceae, Chlorophyta) - a new picoplanktonic green alga from a turbid, shallow soda pan. Phycologia 2011, 50(1):1-10.
  • [75]Somogyi B, Felföldi T, Solymosi K, Flieger K, Márialigeti K, Böddi B, Vörös L: One step closer to eliminating the nomenclatural problems of minute coccoid green algae: Pseudochloris wilhelmii, gen. et sp. nov. (Trebouxiophyceae, Chlorophyta). Eur J Phycol 2013, 48(4):427-436.
  • [76]Marin B: Nested in the Chlorellales or independent class? Phylogeny and classification of the Pedinophyceae (Viridiplantae) revealed by molecular phylogenetic analyses of complete nuclear and plastid-encoded rRNA operons. Protist 2012, 163(5):778-805.
  • [77]Keller MD, Seluin RC, Claus W, Guillard RRL: Media for the culture of oceanic ultraphytoplankton. J Phycol 1987, 23:633-638.
  • [78]Andersen RA: Algal Culturing Techniques. Elsevier/Academic Press, Boston, Mass; 2005.
  • [79]Turmel M, Otis C, Lemieux C: Tracing the evolution of streptophyte algae and their mitochondrial genome. Genome Biol Evol 2013, 5(10):1817-1835.
  • [80][http://pag.ibis.ulaval.ca/seq/en/index.php] webcite Plateforme d’Analyses Génomiques de l’Université Laval..
  • [81]Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka J, Braverman MS, Chen YJ, Chen ZT, Dewell SB, Du L, Fierro JM, Gomes XV, Godwin BC, He W, Helgesen S, Ho CH, Irzyk GP, Jando SC, Alenquer MLI, Jarvie TP, Jirage KB, Kim JB, Knight JR, Lanza JR, Leamon JH, Lefkowitz SM, Lei M, Li J, et al.: Genome sequencing in microfabricated high-density picolitre reactors. Nature 2005, 437(7057):376-380.
  • [82]Gordon D, Abajian C, Green P: Consed: a graphical tool for sequence finishing. Genome Res 1998, 8:195-202.
  • [83][http://www.gqinnovationcenter.com/index.aspx] webcite Innovation Centre of McGill University and Genome Quebec..
  • [84]Boisvert S, Laviolette F, Corbeil J: Ray: simultaneous assembly of reads from a mix of high-throughput sequencing technologies. J Comput Biol 2010, 17(11):1519-1533.
  • [85]Pombert JF, Otis C, Lemieux C, Turmel M: The chloroplast genome sequence of the green alga Pseudendoclonium akinetum (Ulvophyceae) reveals unusual structural features and new insights into the branching order of chlorophyte lineages. Mol Biol Evol 2005, 22(9):1903-1918.
  • [86]Lagesen K, Hallin P, Rodland EA, Staerfeldt HH, Rognes T, Ussery DW: RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 2007, 35(9):3100-3108.
  • [87]Lowe TM, Eddy SR: tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 1997, 25(5):955-964.
  • [88]Michel F, Umesono K, Ozeki H: Comparative and functional anatomy of group II catalytic introns - a review. Gene 1989, 82(1):5-30.
  • [89]Michel F, Westhof E: Modelling of the three-dimensional architecture of group I catalytic introns based on comparative sequence analysis. J Mol Biol 1990, 216:585-610.
  • [90]Edgar RC: MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004, 32(5):1792-1797.
  • [91]Capella-Gutierrez S, Silla-Martinez JM, Gabaldon T: trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 2009, 25(15):1972-1973.
  • [92]Smith SA, Dunn CW: Phyutility: a phyloinformatics tool for trees, alignments and molecular data. Bioinformatics 2008, 24(5):715-716.
  • [93]Stamatakis A: RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014, 30(9):1312-1313.
  • [94]Lartillot N, Lepage T, Blanquart S: PhyloBayes 3: a Bayesian software package for phylogenetic reconstruction and molecular dating. Bioinformatics 2009, 25(17):2286-2288.
  • [95]Rice P, Longden I, Bleasby A: EMBOSS: The European molecular biology open software suite. Trends Genet 2000, 16(6):276-277.
  • [96]Nenadic O, Greenacre M: Correspondence analysis in R, with two- and three-dimensional graphics: The ca package. J Stat Software 2007, 20(3):1-13.
  • [97]Castresana J: Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 2000, 17(4):540-552.
  • [98][http://mesquiteproject.org] webcite Maddison WP, Maddison DR: Mesquite: A Modular System for Evolutionary Analysis. Version 2.75. In 2011. .
  • [99][http://dx.doi.org/10.5061/dryad.q4432] webcite Lemieux C, Otis C, Turmel M: Data from: Chloroplast Phylogenomic Analysis Resolves Deep-Level Relationships Within the Green Algal Class Trebouxiophyceae. In .
  文献评价指标  
  下载次数:33次 浏览次数:25次