期刊论文详细信息
BMC Genomics
Secretome weaponries of Cochliobolus lunatus interacting with potato leaf at different temperature regimes reveal a CL[xxxx]LHM - motif
Narayan Chandra Talukdar2  Chandradev K Sharma2  Sailendra Goyari1  Mohendro Wakambam Singh2  Pardeep Kumar Bhardwaj5  Pranab Roy4  Sayanika Devi Waikhom2  Bengyella Louis3 
[1] Department of Biotechnology, Guwahati University, Guwahati 781 014, Assam, India;Institute of Bioresources and Sustainable Development (IBSD), Takyelpat, Imphal 795001, Manipur, India;Department of Biochemistry, University of Yaoundé I, Yaoundé-BP812 Yaoundé, Cameroon;Department of Biotechnology, Haldia Institute of Technology, Haldia 721657, West Bengal, India;Regional Centre of the Institute of Bioresources and Sustainable Development (RCIBSD), Gangtok 737102, Sikkim, India
关键词: 2-D electrophoresis;    Melanized infection hyphae;    Adhesins;    Host-pathogen interaction;    Candidate effectors;    Thermo-pathogenicity;   
Others  :  1217667
DOI  :  10.1186/1471-2164-15-213
 received in 2013-08-03, accepted in 2014-03-13,  发布年份 2014
PDF
【 摘 要 】

Background

Plant and animal pathogenic fungus Cochliobolus lunatus cause great economic damages worldwide every year. C. lunatus displays an increased temperature dependent-virulence to a wide range of hosts. Nonetheless, this phenomenon is poorly understood due to lack of insights on the coordinated secretome weaponries produced by C. lunatus under heat-stress conditions on putative hosts. To understand the mechanism better, we dissected the secretome of C. lunatus interacting with potato (Solanum tuberosum L.) leaf at different temperature regimes.

Results

C. lunatus produced melanized colonizing hyphae in and on potato leaf, finely modulated the ambient pH as a function of temperature and secreted diverse set of proteins. Using two dimensional gel electrophoresis (2-D) and mass spectrometry (MS) technology, we observed discrete secretomes at 20°C, 28°C and 38°C. A total of 21 differentially expressed peptide spots and 10 unique peptide spots (that did not align on the gels) matched with 28 unique protein models predicted from C. lunatus m118 v.2 genome peptides. Furthermore, C. lunatus secreted peptides via classical and non-classical pathways related to virulence, proteolysis, nucleic acid metabolism, carbohydrate metabolism, heat stress, signal trafficking and some with unidentified catalytic domains.

Conclusions

We have identified a set of 5 soluble candidate effectors of unknown function from C. lunatus secretome weaponries against potato crop at different temperature regimes. Our findings demonstrate that C. lunatus has a repertoire of signature secretome which mediates thermo-pathogenicity and share a leucine rich “CL[xxxx]LHM”-motif. Considering the rapidly evolving temperature dependent-virulence and host diversity of C. lunatus, this data will be useful for designing new protection strategies.

【 授权许可】

   
2014 Louis et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150707204002485.pdf 2514KB PDF download
Figure 11. 89KB Image download
Figure 10. 77KB Image download
Figure 9. 97KB Image download
Figure 8. 61KB Image download
Figure 7. 68KB Image download
Figure 6. 53KB Image download
Figure 5. 54KB Image download
Figure 4. 82KB Image download
Figure 3. 82KB Image download
Figure 2. 111KB Image download
Figure 1. 114KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.

Figure 11.

【 参考文献 】
  • [1]Yau YCW, de Nanassy J, Summerbell RC: Fungal sternal wound infection due to Curvularia lunata in a neonate with congenital heart disease: Case report and review. Clin Infect Dis 1994, 19:735-740.
  • [2]Kirk RW, Dan BJ: Curvularia keratitis. Trans Am Ophthalmol Soc 2001, 99:111-132.
  • [3]Iftikhar A, Iram S, Cullum J: Genetic variability and aggressiveness in Curvularia lunata associated with rice-wheat cropping areas of Pakistan. Pak J Bot 2006, 38:475-485.
  • [4]Louis B, Roy P, Waikhom DS, Talukdar NC: Report of foliar necrosis of potato caused by Cochliobolus lunatus in India. Afr J Biotechnol 2013, 12:833-835.
  • [5]Agrios GN: Plant Pathology. 5th edition. Amsterdam: Academic Press; 2005:395.
  • [6]Msikita W, Yaninek JS, Ahounou M, Baimey H, Fagbemissi R: First report of Curvularia lunata associated with stem disease of cassava. Am J Plant Pathol 1997, 81:112-112.
  • [7]Gao S, Liu T, Li Y, Wu Q, Fu K, Chen J: Understanding resistant germplasm induced virulence variation through analysis of proteomics and suppression subtractive hybridisation in a maize pathogen Curvularia lunata. Proc Natl Acad Sci U S A 2012, 12:3524-3535.
  • [8]Xu S, Chen J, Liu L, Wang X, Huang X, Zhai Y: Proteomics associated with virulence differentiation of Curvularia lunata in maize in China. J Integr Plant Biol 2007, 49:487-496.
  • [9]Muchovej JJ, Couch HB: Colonization of bent-grass turf by Curvularia lunata after leaf clipping and heat stress. Plant Dis 1987, 71:873-875.
  • [10]Salleh B, Safininat A, Julia L, Teo CH: Brown spot caused by Curvularia spp. a new disease of Asparagus. Biotropica 1996, 9:26-37.
  • [11]Couch HB: Diseases of Turfgrasses. 3rd edition. Florida, Malabar, USA: Krieger Publishing Company; 1995.
  • [12]Brecht MO, Stiles CM, Datnoff LE: Evaluation of pathogenicity of Bipolaris and Curvularia spp. on dwarf and ultradwarf bermudagrasses in Florida. Plant Health Prog 2007. doi:10.1094/PHP-2007-0119-02-RS
  • [13]Hogenhout SA, Van der Hoorn RA, Terauchi R, Kamoun S: Emerging concepts in effector biology of plant associated organisms. Mol Plant Microbe Interact 2009, 22:115-122.
  • [14]Kamoun S: A catalogue of elicitor secretome of plant pathogenic Oomycetes. Annu Rev Phytopathol 2006, 44:41-60.
  • [15]Ridout CJ, Skamnioti P, Porritt O, Sacristan S, Jones JD: Multiple avirulence paralogues in cereal powdery mildew fungi may contribute to parasite fitness and defeat of plant resistance. Plant Cell 2006, 18:2402-2414.
  • [16]Have-Ten A, Breuil WO, Wubben JP, Visser J, Kan VJ: Botrytis cinerea endopolygalacturonase genes are differentially expressed in various plant tissues. Fungal Genet Biol 2001, 33:97-105.
  • [17]Louis B, Roy P: Switching between heat shock proteins and cold inducible proteins under temperature fluctuation in Solanum tuberosum L. cultivars in in vivo condition. Bristish J Biotechnol 2011, 1:101-112.
  • [18]Bradford MM: A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Ann Biochem 1976, 72:248-354.
  • [19]Conner PJ: A detached leaf technique for studying race-specific resistance to Cladosporium caryigenum in pecan. J Am Soc Horti Sci 2002, 127:781-785.
  • [20]Shevchenko A, Tomas H, Havis J, Olsen JV, Mann M: In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat Protoc 2006, 1:2856-2860.
  • [21]Elias JE, Haas W, Faherty BK, Gygi SP: Comparative evaluation of mass spectrometry platforms used in large-scale proteomics investigations. Nat Methods 2005, 2:667-675.
  • [22]Petersen TN, Brunak S, von-Heijne G, Nielsen H: SignalP 4.1: discriminating signal peptides from transmembrane regions. Nat Methods 2011, 8:785-786.
  • [23]Emanuelsson O, Brunak S, von-Heijne G, Nielsen H: Predicting subcellular localization of proteins based on their N-terminal amino acids sequence. J Mol Biol 2000, 300:1005-1016.
  • [24]Kozlowski L: Isoelectric point calculator. 2012. http://isoelectric.ovh.org webcite
  • [25]Eisenhaber B, Schneider G, Wildpaner M, Eisenhaber F: A sensitive predictor for potential GPI lipid modification sites in fungal protein sequences and its application to genome-wide studies for Aspergillus nidulans, Candida albicans, Neurospora crassa, Saccharomyces cerevisiae and Schizosaccharomyces pombe. J Mol Biol 2004, 337:243-253.
  • [26]Ramana J, Gupta D: Faapred: a SVM-based prediction method for fungal adhesins and adhesion-like proteins. PLoS One 2010, 5:e9695.
  • [27]Chaudhuri R, Ansari FA, Raghunandanan MV, Ramachandran S: FungalRV: adhesin prediction and immunoinformatics portal for human fungal pathogens. BMC Genomics 2011, 12:192-206. BioMed Central Full Text
  • [28]Bailey TL, Boden M, Buske FA, Frith M, Grant CE: MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 2009, 37:W202-W208.
  • [29]Bailey TL, Gribskov M: Combining evidence using p-values: application to sequence homology searches. BMC Bioinforma 2008, 14(1):48-54.
  • [30]Grant CE, Bailey TL, Noble WS: FIMO: Scanning for occurrences of a given motif. BMC Bioinforma 2011, 27(7):1017-1018.
  • [31]Nandi S, Mehra N, Lynn AM, Bhattacharya A: Comparison of theoretical proteomes: Identification of COGs with conserved and variable pI within the multimodal pI distribution. BMC Genomics 2005, 6:116. BioMed Central Full Text
  • [32]Kiraga J, Mackiewicz P, Mackiewicz D, Kowalczuk M, Biecek P, Polak N, Smolarczyk K, Dudek MR, Cebrat S: The relationships between the isoelectric point and: length of proteins, taxonomy and ecology of organisms. BMC Genomics 2007, 8:163. BioMed Central Full Text
  • [33]Ahmad QR, Nguyen DH, Wingerd MA, George MC, Steffen MA: Molecular weight assessment of proteins in total proteome profiles using 1D-PAGE and LC/MS/MS. Proteome Sci 2005, 3(6):1-7.
  • [34]Liao J-L, Zhou H-W, Zhang H-Y, Zhong P-A, Huang Y-J: Comparative proteomic analysis of differentially expressed proteins in the early milky stage of rice grains during high temperature stress. J Exp Bot 2014, 65:655-671.
  • [35]Plomion C, Lalanne C, Claverol S, Meddour H, Kohler A, Bogeat-Triboulot MB, Barre A, Provost GL, Dumazet H, Jacob D, Bastien C, Dreyer E, de Deruvar A, Guehl JM, Martin F, Bonneu M: Mapping the proteome of poplar and application to the discovery of drought-stress responsive proteins. Proteomics 2006, 6:6509-6527.
  • [36]Penalva MA, Arst HJ: Regulation of gene expression by ambient pH in filamentous fungi and yeast. Microbiol Mol Biol Rev 2002, 66:426-446.
  • [37]Boqiang L, Wang W, Zong Y, Qin G, Tian S: Exploring pathogenic mechanisms of Botrytis cinerea secretome under different ambient pH based on comparative proteomic analysis. J Proteome Res 2012, 11:4249-4260.
  • [38]Yan HH, Chen J, Xia SC, Liu P, Gao ZG: Albinism isolates of Curvularia lunata. Mycosystema 2002, 21:604-606.
  • [39]Bhabhra R, Miley MD, Mylonakis E, Boettner D, Fortwendel J, Panepinto JC, Postow M, Rhodes JC, Askew DS: Disruption of the Aspergillus fumigatus gene encoding nucleolar protein CgrA impairs thermotolerant growth and reduces virulence. Infect Immun 2004, 72:4731-4740.
  • [40]Odom A, Muir S, Lim E, Toffaletti DL, Perfect J, Heitman J: Calcineurin is required for virulence of Cryptococcus neoformans. EMBO J 1997, 16:2576-2589.
  • [41]Kleemann J, Takahara H, Stuber K, O’Connell R: Identification of soluble secreted proteins from appressorial of Colletotrichum higginsianum by analysis of expressed sequence tags. Microbiology 2008, 154:1204-1217.
  • [42]Barrette LG, Thrall PH, van der Dodds PN, Merwe M, Linde CC, Lawrence GJ, Burdon JJ: Diversity and evolution of effector loci in natural populations of the plant pathogen Melampsora lini. Mol Biol Evol 2009, 26:2499-2513.
  • [43]Kirchner JW, Roy BA: Evolutionary implications of host-pathogen specificity: the fitness consequences of pathogen virulence traits. Evol Ecol Res 2002, 4:27-48.
  • [44]Hahne H, Mader U, Otto A, Bonn F, Steil L, Bremer E, Hecker M, Becher D: A comprehensive proteomics and transcriptomics analysis of Bacillus subtilis salt stress adaptation. J Bateriol 2010, 192:870-882.
  • [45]Oh SK, Young C, Lee M, Oliva R, Bozkurt TO, Cano LM, Win J, Bos JIB, Liu H-Y, van Damme M, Morgan W, Choi D, Van der Vossen EAG, Vleeshouwers GAAV, Kamoun S: In planta expression screens of Phytophthora infestans RxLR effectors reveal diverse phenotypes, including activation of the Solanum bulbocastanum disease resistance protein Rpi-blbz. Plant Cell 2009, 21:2928-2947.
  • [46]Bozkurt TO, Schornack S, Win J, Shindo T, Ilyas M, Oliva R, Cano LM, Jones AME, Huitema E, van der Hoorn RAL, Kamoun S: Phytophthora infestans effector AVRblb2 prevents secretion of a plant immune protease at the haustorial interface. Proc Natl Acad Sci U S A 2011, 108:20832-20837.
  • [47]Vleeshouwers V, Rietman H, Krenek P, Champouret N, Young C: Effector genomics accelerates discovery and functional profiling of potato disease resistance and Phytophthora infestans avirulence genes. PLoS One 2008, 3:e2875.
  • [48]Vleeshouwers V, Raffaele S, Vossen J, Champouret N, Oliva R: Understanding and exploiting late blight resistance in the age of effectors. Annu Rev Phytopathol 2011, 49:21-25.
  • [49]Godfrey D, Bohlenius H, Pedersen C, Zhang Z, Emmersen J, Christensen T: Powdery mildew fungal effector candidates share N-terminal Y/F/WxC-motif. BMC Genomics 2010, 11:317-330. BioMed Central Full Text
  • [50]Jiang RHY, Tripathy S, Tyler BM: RXLR effector reservoir two Phytophthora species is dominated by a single rapidly evolving superfamily with more than 700 members. Proc Natl Acad Sci U S A 2008, 105:4874-4879.
  • [51]Saunder DGO, Win J, Cano LM, Szabo LJ, Kamoun S, Raffaele S: Using hierarchical clustering of secreted protein families to classify and rank candidate effectors of rust fungi. PLoS One 2012, 7(1):e29847.
  • [52]Bonin-Debs AL, Boche I, Gikke H, Brinkmann U: Development of secreted proteins as biotherapeutic agents. Expert Opin Biol Ther 2004, 4:551-558.
  • [53]Nombela C, Gil C, Chaffin WL: Non-conventional protein secretion in yeast. Trends Microbiol 2006, 14:15-21.
  • [54]D’Andrea LD, Regan L: TPR proteins: the versatile helix. Trends Biochem Sci 2003, 28:655-662.
  • [55]Cervenyl L, Straskova A, Dankova V, Hartlova A, Ceckova M, Staud F, Stulik J: Tetratricopeptide repeat motifs in the world of bacterial pathogens: role in virulence mechanisms. Infect Immun 2013, 81:629-635.
  • [56]Saraste M, Hyvönen M: Pleckstrin homology domains: a fact file. Curr Opin Struct Biol 1995, 5(3):403-408.
  • [57]Leberer E, Ziegelbauer K, Schmidt A, Harcus D, Dignard D, Ash J, Johnson L, Thomas DY: Virulence and hyphal formation of Candida albicans require the Ste20p-like protein kinase CaCla4p. Curr Biol 1997, 7:539-546.
  • [58]Have-Ten A, Dekker E, Kay J, Phylip LH, van Kan JA: An aspartic proteinase gene family in filamentous fungus Botrytis cinerea contains members with novel features. Microbiology 2009, 150:2475-2489.
  • [59]Margaria P, Abbà S, Palmano S: Novel aspects of gravevine response to phytoplasma infection investigated by a proteomic and phosphor-proteomic approach with data integration into functional networks. BMC Genomics 2013, 14:38-53. BioMed Central Full Text
  • [60]Qin GZ, Liu J, Cao BH, Li BQ, Tian SP: Hydrogen peroxide acts on sensitive mitochondrial proteins to induce death of a fungal pathogen reveal by proteomic analysis. PLoS One 2011, 6:e21945.
  • [61]Joh J, Park Y-J, Son E-S, Yoon D-E, Kwon O-K, Han W, Nam J-Y, Kong W-S, Lee C-S: Isolation and characterization of differentially expressed genes in mycelium and fruit body of Pleurotus osteratus. Afr J Biotechnol 2013, 12(24):3790-3796.
  文献评价指标  
  下载次数:45次 浏览次数:23次