期刊论文详细信息
BMC Genomics
The I2 resistance gene homologues in Solanum have complex evolutionary patterns and are targeted by miRNAs
Jiongjiong Chen1  Feng Li1  Hanhui Kuang1  Chunhua Wei1 
[1] Key Laboratory of Horticulture Biology, Ministry of Education, and Department of Vegetable Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, People’s Republic of China
关键词: miRNA;    Sequence exchange;    Evolution;    Solanaceae;    Ty-2;    I2 locus;   
Others  :  1141054
DOI  :  10.1186/1471-2164-15-743
 received in 2014-04-07, accepted in 2014-08-26,  发布年份 2014
PDF
【 摘 要 】

Background

Several resistance traits, including the I2 resistance against tomato fusarium wilt, were mapped to the long arm of chromosome 11 of Solanum. However, the structure and evolution of this locus remain poorly understood.

Results

Comparative analysis showed that the structure and evolutionary patterns of the I2 locus vary considerably between potato and tomato. The I2 homologues from different Solanaceae species usually do not have orthologous relationship, due to duplication, deletion and frequent sequence exchanges. At least 154 sequence exchanges were detected among 76 tomato I2 homologues, but sequence exchanges between I2 homologues in potato is less frequent. Previous study showed that I2 homologues in potato were targeted by miR482. However, our data showed that I2 homologues in tomato were targeted by miR6024 rather than miR482. Furthermore, miR6024 triggers phasiRNAs from I2 homologues in tomato. Sequence analysis showed that miR6024 was originated after the divergence of Solanaceae. We hypothesized that miR6024 and miR482 might have facilitated the expansion of the I2 family in Solanaceae species, since they can minimize their potential toxic effects by down-regulating their expression.

Conclusions

The I2 locus represents a most divergent resistance gene cluster in Solanum. Its high divergence was partly due to frequent sequence exchanges between homologues. We propose that the successful expansion of I2 homologues in Solanum was at least partially attributed to miRNA mediated regulation.

【 授权许可】

   
2014 Wei et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150325195350381.pdf 1243KB PDF download
Figure 6. 83KB Image download
Figure 5. 32KB Image download
Figure 4. 145KB Image download
Figure 3. 149KB Image download
Figure 2. 37KB Image download
Figure 1. 50KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Dangl J, Jones JDG: Plant pathogens and integrated defence responses to infection. Nature 2001, 411(6839):826-833.
  • [2]Chini A, Grant JJ, Seki M, Shinozaki K, Loake GJ: Drought tolerance established by enhanced expression of the CC-NBS-LRR gene, ADR1, requires salicylic acid, EDS1 and ABI1. Plant J 2004, 38(5):810-822.
  • [3]Holt BF, Belkhadir Y, Dangl JL: Antagonistic control of disease resistance protein stability in the plant immune system. Science 2005, 309(5736):929-932.
  • [4]Yang H, Shi Y, Liu J, Guo L, Zhang X, Yang S: A mutant CHS3 protein with TIR-NB-LRR-LIM domains modulates growth, cell death and freezing tolerance in a temperature-dependent manner in Arabidopsis. Plant J 2010, 63(2):283-296.
  • [5]Tuskan GA, Difazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U, Putnam N, Ralph S, Rombauts S, Salamov A, Schein J, Sterck L, Aerts A, Bhalerao RR, Bhalerao RP, Blaudez D, Boerjan W, Brun A, Brunner A, Busov V, Campbell M, Carlson J, Chalot M, Chapman J, Chen GL, Cooper D, Coutinho PM, Couturier J, Covert S, Cronk Q: The genome of black cottonwood, populus trichocarpa. Science 2006, 313(5793):1596-1604.
  • [6]Luo S, Zhang Y, Hu Q, Chen J, Li K, Lu C, Liu H, Wang W, Kuang H: Dynamic nucleotide-binding site and leucine-rich repeat-encoding genes in the grass family. Plant Physiol 2012, 159(1):197-210.
  • [7]Ling HQ, Zhao S, Liu D, Wang J, Sun H, Zhang C, Fan H, Li D, Dong L, Tao Y, Gao C, Wu HL, Li YW, Cui Y, Guo XS, Zheng SS, Wang B, Yu K, Liang QS, Yang WL, Lou XY, Chen J, Feng MJ, Jian JB, Zhang XF, Luo GB, Jiang Y, Liu JJ, Wang ZB, Sha YH, et al.: Draft genome of the wheat A-genome progenitor Triticum urartu. Nature 2013, 496(7443):87-90.
  • [8]Cannon SB, Zhu H, Baumgarten AM, Spangler R, May G, Cook DR, Young ND: Diversity, distribution, and ancient taxonomic relationships within the TIR and non-TIR NBS-LRR resistance gene subfamilies. J Mol Evol 2002, 54(4):548-562.
  • [9]Meyers BC, Kozik A, Griego A, Kuang H, Michelmore RW: Genome-wide analysis of NBS-LRR-encoding genes in arabidopsis. Plant Cell 2003, 15(4):809-834.
  • [10]McHale L, Tan X, Koehl P, Michelmore RW: Plant NBS-LRR proteins: adaptable guards. Genome Biol 2006, 7(4):212. BioMed Central Full Text
  • [11]Tameling WI, Elzinga SD, Darmin PS, Vossen JH, Takken FL, Haring MA, Cornelissen BJ: The tomato R gene products I-2 and Mi-1 are functional ATP binding proteins with ATPase activity. Plant Cell 2002, 14(11):2929-2939.
  • [12]Kobe B, Deisenhofer J: A structural basis of the interactions between leucine-rich repeats and protein ligands. Nature 1995, 374(6518):183-186.
  • [13]Leister RT, Katagiri F: A resistance gene product of the nucleotide binding site - leucine rich repeats class can form a complex with bacterial avirulence proteins in vivo. Plant J 2000, 22(4):345-354.
  • [14]Meyers BC, Shen KA, Rohani P, Gaut BS, Michelmore RW: Receptor-like genes in the major resistance locus of lettuce are subject to divergent selection. Plant Cell 1998, 10(11):1833-1846.
  • [15]Kuang H, Woo SS, Meyers BC, Nevo E, Michelmore RW: Multiple genetic processes result in heterogeneous rates of evolution within the major cluster disease resistance genes in lettuce. Plant Cell 2004, 16(11):2870-2894.
  • [16]Meyers BC, Kaushik S, Nandety RS: Evolving disease resistance genes. Curr Opin Plant Biol 2005, 8(2):129-134.
  • [17]Mondragon-Palomino M, Gaut BS: Gene conversion and the evolution of three leucine-rich repeat gene families in Arabidopsis thaliana. Mol Biol Evol 2005, 22(12):2444-2456.
  • [18]Luo S, Peng J, Li K, Wang M, Kuang H: Contrasting evolutionary patterns of the Rp1 resistance gene family in different species of poaceae. Mol Biol Evol 2011, 28(1):313-325.
  • [19]Kuang H, Ochoa OE, Nevo E, Michelmore RW: The disease resistance gene Dm3 is infrequent in natural populations of Lactuca serriola due to deletions and frequent gene conversions at the RGC2 locus. Plant J 2006, 47(1):38-48.
  • [20]Shen J, Araki H, Chen L, Chen JQ, Tian D: Unique evolutionary mechanism in r-genes under the presence/absence polymorphism in Arabidopsis thaliana. Genetics 2006, 172(2):1243-1250.
  • [21]Simons G, Groenendijk J, Wijbrandi J, Reijans M, Groenen J, Diergaarde P, Van der Lee T, Bleeker M, Onstenk J, de Both M, Haring M, Mes J, Cornelissen B, Zabeau M, Vos P: Dissection of the fusarium I2 gene cluster in tomato reveals six homologs and one active gene copy. Plant Cell 1998, 10(6):1055-1068.
  • [22]Stall RE, Walter JM: Selection and inheritance of resistance in Tomato to isolates of races 1 and 2 of the Fusarium wilt organism. Phytopathology 1965, 55(11):1213-1215.
  • [23]Ji Y, Scott JW, Schuster DJ: Toward fine mapping of the tomato yellow leaf curl virus resistance gene Ty-2 on chomosome 11 of tomato. HortSci 2009, 44(4):614-618.
  • [24]Huang S, van der Vossen EA, Kuang H, Vleeshouwers VG, Zhang N, Borm TJ, van Eck HJ, Baker B, Jacobsen E, Visser RG: Comparative genomics enabled the isolation of the R3a late blight resistance gene in potato. Plant J 2005, 42(2):251-261.
  • [25]Li G, Huang S, Guo X, Li Y, Yang Y, Guo Z, Kuang H, Rietman H, Bergervoet M, Vleeshouwers VG, van der Vossen EA, Qu D, Visser RG, Jacobsen E, Vossen JH: Cloning and characterization of R3b; members of the R3 superfamily of late blight resistance genes show sequence and functional divergence. Mol Plant Microbe Interact 2011, 24(10):1132-1142.
  • [26]EI-Kharbotly A, Leonards-Schippers C, Huigen DJ, Jacobsen E, Pereira A, Stiekema WJ, Salamini F, Gebhardt C: Segregation analysis and RFLP mapping of the R1 and R3 alleles conferring race-specific resistance to Phytophthora infestans in progeny of dihaploid potato parents. Mol Gen Genet 1994, 242(6):749-754.
  • [27]El-Kharbotly A, Palomino-Sanchez C, Salamini F, Jacobsen E, Gebhardt C: R6 and R7 alleles of potato conferring race-specific resistance to Phytophthora infestans (Mont.) de Bary identified genetic loci clustering with the R3 locus on chromosome XI. Theor Appl Genet 1996, 92(7):880-884.
  • [28]Grube RC, Radwanski ER, Jahn M: Comparative genetics of disease resistance within the solanaceae. Genetics 2000, 155(2):873-887.
  • [29]Tian D, Traw MB, Chen JQ, Kreitman M, Bergelson J: Fitness costs of R-gene-mediated resistance in Arabidopsis thaliana. Nature 2003, 423(6935):74-77.
  • [30]Heidel AJ, Clarke JD, Antonovics J, Dong X: Fitness costs of mutations affecting the systemic acquired resistance pathway in Arabidopsis thaliana. Genetics 2004, 168(4):2197-2206.
  • [31]Wang ZX, Yamanouchi U, Katayose Y, Sasaki T, Yano M: Expression of the Pib rice-blast-resistance gene family is up-regulated by environmental conditions favouring infection and by chemical signals that trigger secondary plant defences. Plant Mol Biol 2001, 47(5):653-661.
  • [32]Zhai J, Jeong DH, De Paoli E, Park S, Rosen BD, Li Y, Gonzalez AJ, Yan Z, Kitto SL, Grusak MA, Jachson SA, Stacey G, Cook DR, Green PJ, Sherrier DJ, Meyers BC: MicroRNAs as master regulators of the plant NB-LRR defense gene family via the production of phased, trans-acting siRNAs. Genes Dev 2011, 25(23):2540-2553.
  • [33]Li F, Pignatta D, Bendix C, Brunkard JO, Cohn MM, Tung J, Sun H, Kumar P, Baker B: MicroRNA regulation of plant innate immune receptors. Proc Natl Acad Sci U S A 2012, 109(5):1790-1795.
  • [34]Kalloo MKB: Transfer of tomato leaf curl virus resistance from Lycopersicon hirsutum f. glabratum to L. esculentum. Plant Breed 1990, 105(2):156-159.
  • [35]Xie Y, Jiang T, Zhou X: Agroinoculation Shows Tobacco leaf curl Yunnan virus is a Monopartite Begomovirus. Eur J Plant Pathol 2006, 115(4):369-375.
  • [36]Murray MG, Thompson WF: Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 1980, 8(19):4321-4325.
  • [37]Ori N, Eshed Y, Paran I, Presting G, Aviv D, Tanksley S, Fluhr DZAR: The I2C family from the wilt disease resistance locus i2 belongs to the nucleotide binding, leucine-rich repeat superfamily of plant resistance genes. Plant Cell 1997, 9:521-532.
  • [38]Sela-Buurlage MB, Budai-Hadrian O, Pan Q, Carmel-Goren L, Vunsch R, Zamir D, Fluhr R: Genome-wide dissection of Fusarium resistance in tomato reveals multiple complex loci. Mol Genet Genomics 2001, 265(6):1104-1111.
  • [39]Tomato Genome C: The tomato genome sequence provides insights into fleshy fruit evolution. Nature 2012, 485(7400):635-641.
  • [40]Potato Genome Sequencing Consortium: Genome sequence and analysis of the tuber crop potato. Nature 2011, 475(7355):189-195.
  • [41]Edgar RC: MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004, 32(5):1792-1797.
  • [42]Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S: MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011, 28(10):2731-2739.
  • [43]Sawyer S: Statistical tests for detecting gene conversion. Mol Biol Evol 1989, 6(5):526-538.
  • [44]Sonnhammer EL, Durbin R: A dot-matrix program with dynamic threshold control suited for genomic DNA and protein sequence analysis. Gene 1995, 167(1–2):GC1-10.
  • [45]Li F, Orban R, Baker B: SoMART: a web server for plant miRNA, tasiRNA and target gene analysis. Plant J 2012, 70(5):891-901.
  • [46]Langmead B, Trapnell C, Pop M, Salzberg SL: Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 2009, 10(3):R25. BioMed Central Full Text
  • [47]Hofacker IL: Vienna RNA secondary structure server. Nucleic Acids Res 2003, 31(13):3429-3431.
  • [48]Rhoades MW, Reinhart BJ, Lim LP, Burge CB, Bartel B, Bartel DP: Prediction of plant MicroRNA targets. Cell 2002, 110(4):513-520.
  • [49]Meyers BC, Axtell MJ, Bartel B, Bartel DP, Baulcombe D, Bowman JL, Cao X, Carrington JC, Chen X, Green PJ, Jones SG, Jacobsen SE, Mallory AC, Martienssen RA, Poethig RS, Qi YJ, Vaucheret H, Voinnet O, Watanabe Y, Weigel D, Zhu JK: Criteria for annotation of plant MicroRNAs. Plant Cell 2008, 20(12):3186-3190.
  • [50]Llave C, Xie Z, Kasschau KD, Carrington JC: Cleavage of Scarecrow-like mRNATargets directed by a class of Arabidopsis miRNA. Science 2002, 297(5589):2053-2056.
  • [51]Chi M, Bhagwat B, Lane WD, Tang G, Su Y, Sun R, Oomah BD, Wiersma PA, Xiang Y: Reduced polyphenol oxidase gene expression and enzymatic browning in potato (Solanum tuberosum L.) with artificial microRNAs. BMC Plant Biol 2014, 14:62. BioMed Central Full Text
  • [52]Zakay Y, Navot N, Zeidan M, Kedar N, Rabinowitch H, Czosnek HZ, Zamir D: Screening Lycopersicon accessions for resistance to tomato yellow leaf curl virus: presence of viral DNA and symptom development. Plant Dis 1991, 75(3):279-281.
  • [53]Chaw SM, Zharkikh A, Sung HM, Lau TC, Li WH: Molecular phylogeny of extant gymnosperms and seed plant evolution: analysis of nuclear 18S rRNA sequences. Mol Biol Evol 1997, 14(1):56-68.
  • [54]Wikstrom NSV, Chase MW: Evolution of the angiosperms: calibrating the family tree. Proc Biol Sci 2001, 268(1482):2211-2220.
  • [55]Chen HM, Chen LT, Patel K, Li YH, Baulcombe DC, Wu SH: 22-Nucleotide RNAs trigger secondary siRNA biogenesis in plants. Proc Natl Acad Sci U S A 2010, 107(34):15269-15274.
  • [56]Wang Y, Itaya A, Zhong X, Wu Y, Zhang J, van der Knaap E, Olmstead R, Qi Y, Ding B: Function and evolution of a MicroRNA that regulates a Ca2+-ATPase and triggers the formation of phased small interfering rnas in tomato reproductive growth. Plant Cell 2011, 23(9):3185-3203.
  • [57]Allen E, Xie Z, Gustafson AM, Carrington JC: microRNA-Directed phasing during trans-acting siRNA biogenesis in plants. Cell 2005, 121(2):207-221.
  • [58]Xiaohui Yang MC, Hutton SF, Scott JW, Yanmei Guo XW, Md Harunur R, Dora S, de Jong RGFV H, Yuling B, Yongchen D: Fine mapping of the tomato yellow leaf curl virus resistance gene Ty-2 on chromosome 11 of tomato. Mol Breed 2014. doi10.1007/s11032-014-0072-9
  • [59]Ioannou N: Yellow leaf curl and other virus diseases of tomato in Cyprus. Plant Pathol 1985, 34(3):428-434.
  • [60]Fargette DLM, Harrison BD: Serological studies on the accumulation and localisation of three tomato leaf curl geminiviruses in resistant and susceptible Lycopersicon species and tomato cultivars. Ann Appl Biol 1996, 128(2):317-328.
  • [61]Vidavsky F, Czosnek H: Tomato breeding lines resistant and tolerant to tomato yellow leaf curl virus issued from Lycopersicon hirsutum. Phytopathology 1998, 88(9):910-914.
  • [62]Kuang H, Wei F, Marano MR, Wirtz U, Wang X, Liu J, Shum WP, Zaborsky J, Tallon LJ, Rensink W, Lobst S, Zhang PF, Torngvist CE, Tek A, Bamberg J, Helgeson J, Fry W, You F, Luo MC, Jiang JM, Buell R, Baker B: The R1 resistance gene cluster contains three groups of independently evolving, type I R1 homologues and shows substantial structural variation among haplotypes of Solanum demissum. Plant J 2005, 44(1):37-51.
  • [63]Kuang H, Caldwell KS, Meyers BC, Michelmore RW: Frequent sequence exchanges between homologs of RPP8 in Arabidopsis are not necessarily associated with genomic proximity. Plant J 2008, 54(1):69-80.
  • [64]Shivaprasad PV, Chen HM, Patel K, Bond DM, Santos BA, Baulcombe DC: A microRNA superfamily regulates nucleotide binding site-leucine-rich repeats and other mRNAs. Plant Cell 2012, 24(3):859-874.
  • [65]Li F, Ding SW: Virus counterdefense: diverse strategies for evading the RNA-silencing immunity. Annu Rev Microbiol 2006, 60:503-531.
  • [66]Weiberg A, Wang M, Lin FM, Zhao H, Zhang Z, Kaloshian I, Huang HD, Jin H: Fungal small RNAs suppress plant immunity by hijacking host RNA interference pathways. Science 2013, 342(6154):118-123.
  文献评价指标  
  下载次数:76次 浏览次数:9次