期刊论文详细信息
BMC Cancer
Predicting response to multidrug regimens in cancer patients using cell line experiments and regularised regression models
Steffen Falgreen1  Karen Dybkær2  Ken H Young4  Zijun Y Xu-Monette4  Tarec C El-Galaly3  Maria Bach Laursen1  Julie S Bødker1  Malene K Kjeldsen1  Alexander Schmitz1  Mette Nyegaard5  Hans Erik Johnsen2  Martin Bøgsted2 
[1] Department of Haematology, Research Section, Aalborg University Hospital, Sdr. Skovvej 15, Aalborg, 9000, Denmark
[2] Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark
[3] Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
[4] Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
[5] Department of Biomedicine, Aarhus University, Aarhus, Denmark
关键词: Cancer;    Gene expression profiling;    Preclinical model;    Drug resistance;    Drug screen;   
Others  :  1171828
DOI  :  10.1186/s12885-015-1237-6
 received in 2014-09-25, accepted in 2015-03-20,  发布年份 2015
PDF
【 摘 要 】

Background

Patients suffering from cancer are often treated with a range of chemotherapeutic agents, but the treatment efficacy varies greatly between patients. Based on recent popularisation of regularised regression models the goal of this study was to establish workflows for pharmacogenomic predictors of response to standard multidrug regimens using baseline gene expression data and origin specific cell lines. The proposed workflows are tested on diffuse large B-cell lymphoma treated with R-CHOP first-line therapy.

Methods

First, B-cell cancer cell lines were tested successively for resistance towards the chemotherapeutic components of R-CHOP: cyclophosphamide (C), doxorubicin (H), and vincristine (O). Second, baseline gene expression data were obtained for each cell line before treatment. Third, regularised multivariate regression models with cross-validated tuning parameters were used to generate classifier and predictor based resistance gene signatures (REGS) for the combination and individual chemotherapeutic drugs C, H, and O. Fourth, each developed REGS was used to assign resistance levels to individual patients in three clinical cohorts.

Results

Both classifier and predictor based REGS, for the combination CHO, were of prognostic value. For patients classified as resistant towards CHO the risk of progression was 2.33 (95% CI: 1.6, 3.3) times greater than for those classified as sensitive. Similarly, an increase in the predicted CHO resistance index of 10 was related to a 22% (9%, 36%) increased risk of progression. Furthermore, the REGS classifier performed significantly better than the REGS predictor.

Conclusions

The regularised multivariate regression models provide a flexible workflow for drug resistance studies with promising potential. However, the gene expressions defining the REGSs should be functionally validated and correlated to known biomarkers to improve understanding of molecular mechanisms of drug resistance.

【 授权许可】

   
2015 Falgreen et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150420020904622.pdf 1520KB PDF download
Figure 3. 56KB Image download
Figure 2. 121KB Image download
Figure 1. 57KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Friedberg JW: New strategies in diffuse large B-cell lymphoma: translating findings from gene expression analyses into clinical practice. Clin Cancer Res 2011, 17:6112-7.
  • [2]Lee JK, Havaleshko DM, Cho H, Weinstein JN, Kaldjian EP, Karpovich J, et al.: A strategy for predicting the chemosensitivity of human cancers and its application to drug discovery. Proc Natl Acad Sci U S A 2007, 104:13086-91.
  • [3]Lee JK, Coutant C, Kim Y-C, Qi Y, Theodorescu D, Symmans WF, et al.: Prospective comparison of clinical and genomic multivariate predictors of response to neoadjuvant chemotherapy in breast cancer. Clin Cancer Res 2010, 16:711-8.
  • [4]Boegsted M, Holst JM, Fogd K, Falgreen S, Sørensen S, Schmitz A, et al.: Generation of a predictive melphalan resistance index by drug screen of B-cell cancer cell lines. PLoS One 2011, 6:e19322.
  • [5]Chen J-J, Knudsen S, Mazin W, Dahlgaard J, Zhang B: A 71-gene signature of TRAIL sensitivity in cancer cells. Mol Cancer Ther 2012, 11:34-44.
  • [6]Wang W, Baggerly K, Knudsen S, Askaa J, Mazin W, Coombes KR: Independent validation of a model using cell line chemosensitivity to predict response to therapy. J Natl Cancer Inst 2013, 105:1284-91.
  • [7]Williams PD, Cheon S, Havaleshko DM, Jeong H, Cheng F, Theodorescu D, et al.: Concordant gene expression signatures predict clinical outcomes of cancer patients undergoing systemic therapy. Cancer Res 2009, 69:8302-9.
  • [8]Baggerly K, Coombes KR: Deriving chemosensitivity from cell lines: Forensic bioinformatics and reproducible research in high-throughput biology. Ann Appl Stat 2009, 3:1309-34.
  • [9]Coombes KR, Wang J, Baggerly KA: Microarrays: retracing steps. Nat Med 2007, 13:1276.
  • [10]Shi L, Campbell G, Jones WD, Campagne F, Wen Z, Walker SJ, et al.: The MicroArray Quality Control (MAQC)-II study of common practices for the development and validation of microarray-based predictive models. Nat Biotechnol 2010, 28:827-38.
  • [11]Havaleshko DM, Cho H, Conaway M, Owens CR, Hampton G, Lee JK, et al.: Prediction of drug combination chemosensitivity in human bladder cancer. Mol Cancer Ther 2007, 6:578-86.
  • [12]Liedtke C, Wang J, Tordai A, Symmans WF, Hortobagyi GN, Kiesel L, et al.: Clinical evaluation of chemotherapy response predictors developed from breast cancer cell lines. Breast Cancer Res Treat 2009, 121:301-309.
  • [13]Shen K, Qi Y, Song N, Tian C, Rice SD, Gabrin MJ, et al.: Cell line derived multi-gene predictor of pathologic response to neoadjuvant chemotherapy in breast cancer: a validation study on US Oncology 02–103 clinical trial. BMC Med Genomics 2012, 5:51. BioMed Central Full Text
  • [14]Zou H, Hastie T: Regularization and variable selection via the elastic net. J R Stat Soc Ser B 2005, 67:301-20.
  • [15]Garnett MJ, Edelman EJ, Heidorn SJ, Greenman CD, Dastur A, Lau KW, et al.: Systematic identification of genomic markers of drug sensitivity in cancer cells. Nature 2012, 483:570-5.
  • [16]Barretina J, Caponigro G, Stransky N, Venkatesan K, Margolin AA, Kim S, et al.: The cancer cell line encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 2012, 483:603-7.
  • [17]Papillon-Cavanagh S, De Jay N, Hachem N, Olsen C, Bontempi G, Aerts HJWL, et al.: Comparison and validation of genomic predictors for anticancer drug sensitivity. J Am Med Inform Assoc 2013, 20:597-602.
  • [18]Geeleher P, Cox NJ, Huang RS: Clinical drug response can be predicted using baseline gene expression levels and in vitro drug sensitivity in cell lines. Genome Biol 2014, 15:R47. BioMed Central Full Text
  • [19]Falgreen S, Laursen MB, Bødker JS, Kjeldsen MK, Schmitz A, Nyegaard M, et al.: Exposure time independent summary statistics for assessment of drug dependent cell line growth inhibition. BMC Bioinformatics 2014, 15:168. BioMed Central Full Text
  • [20]Lenz G, Wright G, Dave SS, Xiao W, Powell J, Zhao H, et al.: Stromal gene signatures in large-B-cell lymphomas. N Engl J Med 2008, 359:2313-23.
  • [21]Monti S, Chapuy B, Takeyama K, Rodig SJ, Hao Y, Yeda KT, et al.: Integrative analysis reveals an outcome-associated and targetable pattern of p53 and cell cycle deregulation in diffuse large B cell lymphoma. Cancer Cell 2012, 22:359-72.
  • [22]Shmueli G: To explain or to predict? Stat Sci 2010, 25:289-310.
  • [23]R Core Team: R: a language and environment for statistical computing. 2013.
  • [24]Haibe-Kains B, El-Hachem N, Birkbak NJ, Jin AC, Beck AH, Aerts HJWL, et al.: Inconsistency in large pharmacogenomic studies. Nature 2013, 504:389-93.
  • [25]Moalli PA, Pillay S, Weiner D, Leikin R, Rosen ST: A mechanism of resistance to glucocorticoids in multiple myeloma: transient expression of a truncated glucocorticoid receptor mRNA. Blood 1992, 79:213-22.
  • [26]Vose JM, Link BK, Grossbard ML, Czuczman M, Grillo-Lopez A, Gilman P, et al.: Phase II study of rituximab in combination with chop chemotherapy in patients with previously untreated, aggressive non-Hodgkin’s lymphoma. J Clin Oncol 2001, 19:389-97.
  • [27]Coiffier B, Lepage E, Briere J, Herbrecht R, Tilly H, Bouabdallah R, et al.: CHOP chemotherapy plus rituximab compared with CHOP alone in elderly patients with diffuse large-B-cell lymphoma. N Engl J Med 2002, 346:235-42.
  • [28]Habermann TM, Weller EA, Morrison VA, Gascoyne RD, Cassileth PA, Cohn JB, et al.: Rituximab-CHOP versus CHOP alone or with maintenance rituximab in older patients with diffuse large B-cell lymphoma. J Clin Oncol 2006, 24:3121-7.
  • [29]Pfreundschuh M, Trümper L, Osterborg A, Pettengell R, Trneny M, Imrie K, et al.: CHOP-like chemotherapy plus rituximab versus CHOP-like chemotherapy alone in young patients with good-prognosis diffuse large-B-cell lymphoma: a randomised controlled trial by the MabThera International Trial (MInT) Group. Lancet Oncol 2006, 7:379-91.
  • [30]Sehn LH, Donaldson J, Chhanabhai M, Fitzgerald C, Gill K, Klasa R, et al.: Introduction of combined CHOP plus rituximab therapy dramatically improved outcome of diffuse large B-cell lymphoma in British Columbia. J Clin Oncol 2005, 23:5027-33.
  • [31]Ziepert M, Hasenclever D, Kuhnt E, Glass B, Schmitz N, Pfreundschuh M, et al.: Standard International prognostic index remains a valid predictor of outcome for patients with aggressive CD20+ B-cell lymphoma in the rituximab era. J Clin Oncol 2010, 28:2373-80.
  • [32]Shipp MA, Harington DP, Anderson JR, Armitage JO, Bonadonna G, et al.: A predictive model for aggressive non-Hodgkin’s lymphoma. The International Non-Hodgkin’s Lymphoma Prognostic Factors Project. N Engl J Med 1993, 329:987-94.
  • [33]Schmoll HJ, Van Cutsem E, Stein A, Valentini V, Glimelius B, Haustermans K, et al.: ESMO Consensus Guidelines for management of patients with colon and rectal cancer. a personalized approach to clinical decision making. Ann Oncol 2012, 23:2479-516.
  • [34]Sweetenham JW: Diffuse large B-cell lymphoma: risk stratification and management of relapsed disease. Hematol Am Soc Hematol Educ Program 2005, 2005:252-9.
  • [35]Lenz G, Staudt LM: Aggressive lymphomas. N Engl J Med 2010, 362:1417-29.
  • [36]Visco C, Li Y, Xu-Monette Z, Miranda R: Comprehensive gene expression profiling and immunohistochemical studies support application of immunophenotypic algorithm for molecular subtype classification in diffuse large B-cell lymphoma: a report from the International DLBCL Rituximab-CHOP Consortiu. Leukemia 2012, 26:2103-13.
  • [37]Zhan F, Huang Y, Colla S, Stewart JP, Hanamura I, Gupta S, et al.: The molecular classification of multiple myeloma. Blood 2006, 108:2020-8.
  • [38]Huang S, Pang L: Comparing statistical methods for quantifying drug sensitivity based on in vitro dose–response assays. Assay Drug Dev Technol 2012, 10:88-96.
  • [39]Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, et al.: Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 2004, 5:R80. BioMed Central Full Text
  • [40]Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, et al.: Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 2003, 4:249-64.
  • [41]Friedman J, Hastie T, Tibshirani R: Regularization paths for generalized linear models via coordinate descent. J Stat Softw 2010, 33:1-24.
  • [42]Tibshirani R: Regression shrinkage and selection via the lasso. J R Stat Soc Ser B 1996, 58:267-88.
  • [43]Hoerl AE, Kennard RW: Ridge regression: biased estimation for nonorthogonal problems. Technometrics 1970, 12:55-67.
  • [44]Segal MR, Dahlquist KD, Conklin BR: Regression approaches for microarray data analysis. J Comput Biol 2003, 10:961-1080.
  • [45]Hung H, Chiang C-T: Estimation methods for time-dependent AUC models with survival data. Can J Stat 2009, 38:8-26.
  • [46]Blanche P, Dartigues J-F, Jacqmin-Gadda H: Estimating and comparing time-dependent areas under receiver operating characteristic curves for censored event times with competing risks. Stat Med 2013, 32:5381-97.
  • [47]Smyth GK: Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 2004, 3:Article3.
  • [48]Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al.: Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 2000, 25:25-9.
  • [49]Falcon S, Gentleman R: Using GOstats to test gene lists for GO term association. Bioinformatics 2007, 23:257-8.
  • [50]Holm S: A simple sequentially rejective multiple test procedure. Scand J Stat 1979, 6:65-70.
  • [51]Hartmann A, Herkommer K, Glück M, Speit G: DNA-damaging effect of cyclophosphamide on human blood cells in vivo and in vitro studied with the single-cell gel test (comet assay). Environ Mol Mutagen 1995, 25:180-7.
  • [52]Channarayappa , Ong T, Nath J: Cytogenetic effects of vincristine sulfate and ethylene dibromide in human peripheral lymphocytes: micronucleus analysis. Environ Mol Mutagen 1992, 20:117-26.
  • [53]Lambert B, Sten M, Söderhäll S, Ringborg U, Lewensohn R: DNA repair replication, DNA breaks and sister-chromatid exchange in human cells treated with adriamycin in vitro. Mutat Res 1983, 111:171-84.
  • [54]Zhang Y-W, Brognard J, Coughlin C, You Z, Dolled-Filhart M, Aslanian A, et al.: The F box protein Fbx6 regulates Chk1 stability and cellular sensitivity to replication stress. Mol Cell 2009, 35:442-53.
  • [55]Liang Y, Lin S-Y, Brunicardi FC, Goss J, Li K: DNA damage response pathways in tumor suppression and cancer treatment. World J Surg 2009, 33:661-6.
  • [56]Lindsey-Boltz LA, Bermudez VP, Hurwitz J, Sancar A: Purification and characterization of human DNA damage checkpoint Rad complexes. Proc Natl Acad Sci U S A 2001, 98:11236-41.
  • [57]Murakami K, Kondo T, Kawase M, Li Y, Sato S, Chen SF, et al.: Mitochondrial susceptibility to oxidative stress exacerbates cerebral infarction that follows permanent focal cerebral ischemia in mutant mice with manganese superoxide dismutase deficiency. J Neurosci 1998, 18:205-13.
  • [58]Pallasch CP, Leskov I, Braun CJ, Vorholt D, Drake A, Soto-Feliciano YM, et al.: Sensitizing protective tumor microenvironments to antibody-mediated therapy. Cell 2014, 156:590-602.
  • [59]Bourgon R, Gentleman R, Huber W: Independent filtering increases detection power for high-throughput experiments. Proc Natl Acad Sci U S A 2010, 107:9546-51.
  • [60]Dybkær K, Bøgsted M, Falgreen S, Bødker JS, Kjeldsen MK, Schmitz A, et al. Diffuse large B-Cell lymphoma classification system that associates normal b-cell subset phenotypes with prognosis. J Clin Oncol. 2015. In press.
  • [61]Royston P, Altman DG, Sauerbrei W: Dichotomizing continuous predictors in multiple regression: a bad idea. Stat Med 2006, 25:127-41.
  文献评价指标  
  下载次数:25次 浏览次数:7次