期刊论文详细信息
BMC Molecular Biology
Wnt antagonist, secreted frizzled-related protein 1, is involved in prenatal skeletal muscle development and is a target of miRNA-1/206 in pigs
Kui Li1  Zhonglin Tang1  Rong Zhou2  Chuzhao Lei3  Ruiqi Wang2  Wei Sun3  Yalan Yang1 
[1] Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, P.R. China;Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China;College of Animal Science and Technology, Northwest A & F University, No. 22 Xinong Road, Yangling, 712100, Shanxi, P.R. China
关键词: Pig;    Development;    Skeletal muscle;    miRNA-1;    miRNA-206;    SFRP1;   
Others  :  1137772
DOI  :  10.1186/s12867-015-0035-7
 received in 2014-10-29, accepted in 2015-02-19,  发布年份 2015
PDF
【 摘 要 】

Background

The Wnt signaling pathway is involved in the control of cell proliferation and differentiation during skeletal muscle development. Secreted frizzled-related proteins (SFRPs), such as SFRP1, function as inhibitors of Wnt signaling. MicroRNA-1/206(miRNA-1/206) is specifically expressed in skeletal muscle and play a critical role in myogenesis. The miRNA-mRNA profiles and bioinformatics study suggested that the SFRP1 gene was potentially regulated by miRNA-1/206 during porcine skeletal muscle development.

Methods

To understand the function of SFRP1 and miRNA-1/206 in swine myogenesis, we first predicted the targets of miRNA-1/206 with the TargetScan and PicTar programs, and analyzed the molecular characterization of the porcine SFRP1 gene. We performed a temporal-spatial expression analysis of SFRP1 mRNA and miRNA-206 in Tongcheng pigs (a Chinese indigenous breed) by quantitative real-time polymerase chain reaction, and conducted the co-expression analyses of SFRP1 and miRNA-1/206. Subsequently, the interaction between SFRP1 and miRNA-1/206 was validated via dual luciferase and Western blot assays.

Results

The bioinformatics analysis predicted SFRP1 to be a target of miRNA-1/206. The expression level of the SFRP1 was highly varied across numerous pig tissues and it was down-regulated during porcine skeletal muscle development. The expression level of the SFRP1 was significantly higher in the embryonic skeletal compared with postnatal skeletal muscle, whereas miR-206 showed the inverse pattern of expression. A significant negative correlation was observed between the expression of miR-1/206 and SFRP1 during porcine skeletal muscle development (p <0.05). Dual luciferase assay and Western-blot results demonstrated that SFRP1 was a target of miR-1/206 in porcine iliac endothelial cells.

Conclusions

Our results indicate that the SFRP1 gene is regulated by miR-1/206 and potentially affects skeletal muscle development. These findings increase understanding of the biological functions and the regulation of the SFRP1 gene in mammals.

【 授权许可】

   
2015 Yang et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150318020547468.pdf 2347KB PDF download
Figure 9. 17KB Image download
Figure 8. 12KB Image download
Figure 7. 94KB Image download
Figure 6. 28KB Image download
Figure 5. 32KB Image download
Figure 4. 26KB Image download
Figure 3. 16KB Image download
Figure 2. 68KB Image download
Figure 1. 31KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

【 参考文献 】
  • [1]von Maltzahn J, Chang NC, Bentzinger CF, Rudnicki MA: Wnt signaling in myogenesis. Trends Cell Biol 2012, 22(11):602-9.
  • [2]Cisternas P, Henriquez JP, Brandan E, Inestrosa NC: Wnt signaling in skeletal muscle dynamics: myogenesis, neuromuscular synapse and fibrosis. Mol Neurobiol 2014, 49(1):574-89.
  • [3]Ridgeway AG, Petropoulos H, Wilton S, Skerjanc IS: Wnt signaling regulates the function of MyoD and myogenin. J Biol Chem 2000, 275(42):32398-405.
  • [4]Rudnicki MA, Le Grand F, McKinnell I, Kuang S: The molecular regulation of muscle stem cell function. Cold Spring Harb Symp Quant Biol 2008, 73:323-31.
  • [5]Vertino AM, Taylor-Jones JM, Longo KA, Bearden ED, Lane TF, McGehee RE Jr, et al.: Wnt10b deficiency promotes coexpression of myogenic and adipogenic programs in myoblasts. Mol Biol Cell 2005, 16(4):2039-48.
  • [6]Otto A, Schmidt C, Luke G, Allen S, Valasek P, Muntoni F, et al.: Canonical Wnt signalling induces satellite-cell proliferation during adult skeletal muscle regeneration. J Cell Sci 2008, 121(Pt 17):2939-50.
  • [7]Rattner A, Hsieh JC, Smallwood PM, Gilbert DJ, Copeland NG, Jenkins NA, et al.: A family of secreted proteins contains homology to the cysteine-rich ligand-binding domain of frizzled receptors. Proc Natl Acad Sci U S A 1997, 94(7):2859-63.
  • [8]Xu Q, D'Amore PA, Sokol SY: Functional and biochemical interactions of Wnts with FrzA, a secreted Wnt antagonist. Development 1998, 125(23):4767-76.
  • [9]Jones SE, Jomary C: Secreted Frizzled-related proteins: searching for relationships and patterns. Bioessays 2002, 24(9):811-20.
  • [10]Chen Y, Stump RJ, Lovicu FJ, McAvoy JW: Expression of Frizzleds and secreted frizzled-related proteins (Sfrps) during mammalian lens development. Int J Dev Biol 2004, 48(8–9):867-77.
  • [11]Lavergne E, Hendaoui I, Coulouarn C, Ribault C, Leseur J, Eliat PA, et al.: Blocking Wnt signaling by SFRP-like molecules inhibits in vivo cell proliferation and tumor growth in cells carrying active beta-catenin. Oncogene 2010, 30(4):423-33.
  • [12]Descamps S, Arzouk H, Bacou F, Bernardi H, Fedon Y, Gay S, et al.: Inhibition of myoblast differentiation by Sfrp1 and Sfrp2. Cell Tissue Res 2008, 332(2):299-306.
  • [13]Ezan J, Leroux L, Barandon L, Dufourcq P, Jaspard B, Moreau C, et al.: FrzA/sFRP-1, a secreted antagonist of the Wnt-Frizzled pathway, controls vascular cell proliferation in vitro and in vivo. Cardiovasc Res 2004, 63(4):731-8.
  • [14]Bartel DP: MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004, 116(2):281-97.
  • [15]He L, Hannon GJ: MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 2004, 5(7):522-31.
  • [16]Carrington JC, Ambros V: Role of microRNAs in plant and animal development. Science 2003, 301(5631):336-8.
  • [17]Chen X, Ba Y, Ma L, Cai X, Yin Y, Wang K, et al.: Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res 2008, 18(10):997-1006.
  • [18]Ren J, Huang HJ, Gong Y, Yue S, Tang LM, Cheng SY: MicroRNA-206 suppresses gastric cancer cell growth and metastasis. Cell Biosci 2014, 4:26. BioMed Central Full Text
  • [19]Tay Y, Zhang J, Thomson AM, Lim B, Rigoutsos I: MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. Nature 2008, 455(7216):1124-8.
  • [20]Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M, et al.: miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci U S A 2005, 102(39):13944-9.
  • [21]Krutzfeldt J, Stoffel M: MicroRNAs: a new class of regulatory genes affecting metabolism. Cell Metab 2006, 4(1):9-12.
  • [22]Kloosterman WP, Plasterk RH: The diverse functions of microRNAs in animal development and disease. Dev Cell 2006, 11(4):441-50.
  • [23]McCarthy JJ: MicroRNA-206: the skeletal muscle-specific myomiR. Biochim Biophys Acta 2008, 1779(11):682-91.
  • [24]McCarthy JJ, Esser KA: MicroRNA-1 and microRNA-133a expression are decreased during skeletal muscle hypertrophy. J Appl Physiol 2007, 102(1):306-13.
  • [25]Xu C, Lu Y, Pan Z, Chu W, Luo X, Lin H, et al.: The muscle-specific microRNAs miR-1 and miR-133 produce opposing effects on apoptosis by targeting HSP60, HSP70 and caspase-9 in cardiomyocytes. J Cell Sci 2007, 120(Pt 17):3045-52.
  • [26]Baskerville S, Bartel DP: Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes. RNA 2005, 11(3):241-7.
  • [27]Chen JF, Tao Y, Li J, Deng Z, Yan Z, Xiao X, et al.: microRNA-1 and microRNA-206 regulate skeletal muscle satellite cell proliferation and differentiation by repressing Pax7. J Cell Biol 2010, 190(5):867-79.
  • [28]Kim HK, Lee YS, Sivaprasad U, Malhotra A, Dutta A: Muscle-specific microRNA miR-206 promotes muscle differentiation. J Cell Biol 2006, 174(5):677-87.
  • [29]Chen JF, Mandel EM, Thomson JM, Wu Q, Callis TE, Hammond SM, et al.: The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet 2006, 38(2):228-33.
  • [30]Hou X, Tang Z, Liu H, Wang N, Ju H, Li K: Discovery of MicroRNAs associated with myogenesis by deep sequencing of serial developmental skeletal muscles in pigs. PLoS One 2012, 7(12):e52123.
  • [31]da Huang W, Sherman BT, Lempicki RA: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 2009, 4(1):44-57.
  • [32]Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S: MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011, 28(10):2731-9.
  • [33]Kozomara A, Griffiths-Jones S: miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res 2014, 42(Database issue):D68-73.
  • [34]Ai J, Zhang R, Li Y, Pu J, Lu Y, Jiao J, et al.: Circulating microRNA-1 as a potential novel biomarker for acute myocardial infarction. Biochem Biophys Res Commun 2010, 391(1):73-7.
  • [35]Tang Z, Liang R, Zhao S, Wang R, Huang R, Li K: CNN3 Is Regulated by microRNA-1 during Muscle Development in Pigs. Int J Biol Sci 2014, 10(4):377-85.
  • [36]Yang B, Lin H, Xiao J, Lu Y, Luo X, Li B, et al.: The muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2. Nat Med 2007, 13(4):486-91.
  • [37]Taulli R, Bersani F, Foglizzo V, Linari A, Vigna E, Ladanyi M, et al.: The muscle-specific microRNA miR-206 blocks human rhabdomyosarcoma growth in xenotransplanted mice by promoting myogenic differentiation. J Clin Invest 2009, 119(8):2366-78.
  • [38]Cadigan KM, Nusse R: Wnt signaling: a common theme in animal development. Genes Dev 1997, 11(24):3286-305.
  • [39]van Amerongen R, Berns A: Knockout mouse models to study Wnt signal transduction. Trends Genet 2006, 22(12):678-89.
  • [40]Tsivitse S: Notch and Wnt signaling, physiological stimuli and postnatal myogenesis. Int J Biol Sci 2010, 6(3):268-81.
  • [41]Steelman CA, Recknor JC, Nettleton D, Reecy JM: Transcriptional profiling of myostatin-knockout mice implicates Wnt signaling in postnatal skeletal muscle growth and hypertrophy. FASEB J 2006, 20(3):580-2.
  • [42]Zhao P, Hoffman EP: Embryonic myogenesis pathways in muscle regeneration. Dev Dyn 2004, 229(2):380-92.
  • [43]Svensson A, Norrby M, Libelius R, Tagerud S: Secreted frizzled related protein 1 (Sfrp1) and Wnt signaling in innervated and denervated skeletal muscle. J Mol Histol 2008, 39(3):329-37.
  • [44]Finch PW, He X, Kelley MJ, Uren A, Schaudies RP, Popescu NC, et al.: Purification and molecular cloning of a secreted, Frizzled-related antagonist of Wnt action. Proc Natl Acad Sci U S A 1997, 94(13):6770-5.
  • [45]Melkonyan HS, Chang WC, Shapiro JP, Mahadevappa M, Fitzpatrick PA, Kiefer MC, et al.: SARPs: a family of secreted apoptosis-related proteins. Proc Natl Acad Sci U S A 1997, 94(25):13636-41.
  • [46]Picard B, Lefaucheur L, Berri C, Duclos MJ: Muscle fibre ontogenesis in farm animal species. Reprod Nutr Dev 2002, 42(5):415-31.
  • [47]Lefaucheur L, Edom F, Ecolan P, Butler-Browne GS: Pattern of muscle fiber type formation in the pig. Dev Dyn 1995, 203(1):27-41.
  • [48]Wigmore PM, Stickland NC: Muscle development in large and small pig fetuses. J Anat 1983, 137(Pt 2):235-45.
  • [49]Cossu G, Borello U: Wnt signaling and the activation of myogenesis in mammals. EMBO J 1999, 18(24):6867-72.
  • [50]Nagalla S, Shaw C, Kong X, Kondkar AA, Edelstein LC, Ma L, et al.: Platelet microRNA-mRNA coexpression profiles correlate with platelet reactivity. Blood 2011, 117(19):5189-97.
  • [51]Ponsuksili S, Du Y, Hadlich F, Siengdee P, Murani E, Schwerin M, et al.: Correlated mRNAs and miRNAs from co-expression and regulatory networks affect porcine muscle and finally meat properties. BMC Genomics 2013, 14:533. BioMed Central Full Text
  • [52]Zhao S, Zhang J, Hou X, Zan L, Wang N, Tang Z, et al.: OLFML3 expression is decreased during prenatal muscle development and regulated by microRNA-155 in pigs. Int J Biol Sci 2012, 8(4):459-69.
  文献评价指标  
  下载次数:4次 浏览次数:6次