期刊论文详细信息
BMC Molecular Biology
Multiple tandem splicing silencer elements suppress aberrant splicing within the long exon 26 of the human Apolipoprotein B gene
Bernard Khoo1  Shern L Chew3  Naveenan Navaratnam4  Dennis Norman2  Scott A Akker3  Umasuthan Srirangalingam3 
[1] Current address: Department of Endocrinology, UCL Medical School, Royal Free Campus, Rowland Hill Street, London, NW3 2PF, UK;Current address: Argenta Discovery Ltd, 8/9 Spire Green Centre, Flex Meadow, Harlow, Essex, CM19 5TR, UK;Department of Endocrinology, William Harvey Research Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK;RNA Editing Group, MRC Clinical Sciences Centre, Division of Clinical Sciences, Imperial College London, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK
关键词: Splicing silencers;    Splice sites;    Splicing regulation;    RNA splicing;    Apolipoprotein B;   
Others  :  1091213
DOI  :  10.1186/1471-2199-14-5
 received in 2012-06-16, accepted in 2013-01-22,  发布年份 2013
PDF
【 摘 要 】

Background

Apolipoprotein B (APOB) is an integral component of the chylomicron and the atherogenic lipoproteins LDL and Lp(a). Exon 26 of the APOB pre-mRNA is unusually long at 7,572 nt and is constitutively spliced. It is also subject to RNA editing in the intestine, which generates a shortened isoform, APOB48, assembled exclusively into chylomicrons. Due to its length, exon 26 contains multiple pseudo splice sites which are not spliced, but which conform to the degenerate splice site consensus.

Results

We demonstrate that these pseudo splice sites are repressed by multiple, tandem splicing silencers distributed along the length of exon 26. The distribution of these elements appears to be heterogeneous, with a greater frequency in the middle 4,800 nt of the exon.

Conclusion

Repression of these splice sites is key to maintaining the integrity of exon 26 during RNA splicing and therefore the correct expression of both isoforms of APOB.

【 授权许可】

   
2013 Srirangalingam et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150128170331120.pdf 1342KB PDF download
Figure 6. 54KB Image download
Figure 5. 33KB Image download
Figure 4. 34KB Image download
Figure 3. 35KB Image download
Figure 5. 17KB Image download
Figure 1. 52KB Image download
【 图 表 】

Figure 1.

Figure 5.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Rosenson R: Lipoprotein classification; metabolism; and role in atherosclerosis. UpToDate.com, Wellesley, MA: USA; 2005.
  • [2]Chester A, Scott J, Anant S, Navaratnam N: RNA editing: cytidine to uridine conversion in apolipoprotein B mRNA. Biochim Biophys Acta 2000, 1494(1–2):1-13.
  • [3]Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W: Initial sequencing and analysis of the human genome. Nature 2001, 409(6822):860-921.
  • [4]Shapiro MB, Senapathy P: RNA splice junctions of different classes of eukaryotes: sequence statistics and functional implications in gene expression. Nucleic Acids Res 1987, 15(17):7155-7174.
  • [5]Fairbrother WG, Chasin LA: Human genomic sequences that inhibit splicing. Mol Cell Biol 2000, 20(18):6816-6825.
  • [6]Sun H, Chasin LA: Multiple splicing defects in an intronic false exon. Mol Cell Biol 2000, 20(17):6414-6425.
  • [7]Liu HX, Zhang M, Krainer AR: Identification of functional exonic splicing enhancer motifs recognized by individual SR proteins. Genes Dev 1998, 12(13):1998-2012.
  • [8]Zhang XH, Chasin LA: Computational definition of sequence motifs governing constitutive exon splicing. Genes Dev 2004, 18(11):1241-1250.
  • [9]Fairbrother WG, Yeh RF, Sharp PA, Burge CB: Predictive identification of exonic splicing enhancers in human genes. Science 2002, 297(5583):1007-1013.
  • [10]Wang Z, Rolish ME, Yeo G, Tung V, Mawson M, Burge CB: Systematic identification and analysis of exonic splicing silencers. Cell 2004, 119(6):831-845.
  • [11]Del Gatto-Konczak F, Olive M, Gesnel MC, Breathnach R: hnRNP A1 recruited to an exon in vivo can function as an exon splicing silencer. Mol Cell Biol 1999, 19(1):251-260.
  • [12]Wagner EJ, Garcia-Blanco MA: Polypyrimidine tract binding protein antagonizes exon definition. Mol Cell Biol 2001, 21(10):3281-3288.
  • [13]Chen CD, Kobayashi R, Helfman DM: Binding of hnRNP H to an exonic splicing silencer is involved in the regulation of alternative splicing of the rat beta-tropomyosin gene. Genes Dev 1999, 13(5):593-606.
  • [14]Mayeda A, Krainer AR: Regulation of alternative pre-mRNA splicing by hnRNP A1 and splicing factor SF2. Cell 1992, 68(2):365-375.
  • [15]Bai Y, Lee D, Yu T, Chasin LA: Control of 3′ splice site choice in vivo by ASF/SF2 and hnRNP A1. Nucleic Acids Res 1999, 27(4):1126-1134.
  • [16]Robberson BL, Cote GJ, Berget SM: Exon definition may facilitate splice site selection in RNAs with multiple exons. Mol Cell Biol 1990, 10(1):84-94.
  • [17]Talerico M, Berget SM: Intron definition in splicing of small Drosophila introns. Mol Cell Biol 1994, 14(5):3434-3445.
  • [18]Fox-Walsh KL, Dou Y, Lam BJ, Hung SP, Baldi PF, Hertel KJ: The architecture of pre-mRNAs affects mechanisms of splice-site pairing. Proc Natl Acad Sci USA 2005, 102(45):16176-16181.
  • [19]Yeo G, Burge CB: Maximum entropy modeling of short sequence motifs with applications to RNA splicing signals. J Comput Biol 2004, 11(2–3):377-394.
  • [20]Desmet FO HD, Lalande M, Collod-Beroud G, Claustres M, Beroud C: Human Splicing Finder: an online bioinformatics tool to predict splicing signals. Nucl Acids Res 2009, 37(9):e67. http://www.umd.be/HSF/HSF.html webcite
  • [21]Zhu J, Mayeda A, Krainer AR: Exon identity established through differential antagonism between exonic splicing silencer-bound hnRNP A1 and enhancer-bound SR proteins. Mol Cell 2001, 8(6):1351-1361.
  • [22]Burd CG, Dreyfuss G: RNA binding specificity of hnRNP A1: significance of hnRNP A1 high-affinity binding sites in pre-mRNA splicing. EMBO J 1994, 13(5):1197-1204.
  • [23]Kan JL, Green MR: Pre-mRNA splicing of IgM exons M1 and M2 is directed by a juxtaposed splicing enhancer and inhibitor. Genes Dev 1999, 13(4):462-471.
  • [24]Krainer AR, Maniatis T, Ruskin B, Green MR: Normal and mutant human beta-globin pre-mRNAs are faithfully and efficiently spliced in vitro. Cell 1984, 36(4):993-1005.
  • [25]Shah RR, Knott TJ, Legros JE, Navaratnam N, Greeve JC, Scott J: Sequence requirements for the editing of apolipoprotein B mRNA. J Biol Chem 1991, 266(25):16301-16304.
  • [26]Sowden MP, Smith HC: Commitment of apolipoprotein B RNA to the splicing pathway regulates cytidine-to-uridine editing-site utilization. Biochem J 2001, 359(Pt 3):697-705.
  • [27]Lellek H, Kirsten R, Diehl I, Apostel F, Buck F, Greeve J: Purification and molecular cloning of a novel essential component of the apolipoprotein B mRNA editing enzyme-complex. J Biol Chem 2000, 275(26):19848-19856.
  • [28]Anant S, Henderson JO, Mukhopadhyay D, Navaratnam N, Kennedy S, Min J, Davidson NO: Novel role for RNA-binding protein CUGBP2 in mammalian RNA editing. CUGBP2 modulates C to U editing of apolipoprotein B mRNA by interacting with apobec-1 and ACF, the apobec-1 complementation factor. J Biol Chem 2001, 276(50):47338-47351.
  • [29]Wood M, Yin H, McClorey G: Modulating the expression of disease genes with RNA-based therapy. PLoS Genet 2007, 3(6):e109.
  • [30]Khoo B, Roca X, Chew SL, Krainer AR: Antisense oligonucleotide-induced alternative splicing of the APOB mRNA generates a novel isoform of APOB. BMC Mol Biol 2007, 8:3. BioMed Central Full Text
  • [31]Fairbrother WG, Holste D, Burge CB, Sharp PA: Single nucleotide polymorphism-based validation of exonic splicing enhancers. PLoS Biol 2004, 2(9):E268.
  • [32]Yeo G, Hoon S, Venkatesh B, Burge CB: Variation in sequence and organization of splicing regulatory elements in vertebrate genes. Proc Natl Acad Sci USA 2004, 101(44):15700-15705.
  • [33]Cartegni L, Wang J, Zhu Z, Zhang MQ, Krainer AR: ESEfinder: A web resource to identify exonic splicing enhancers. Nucleic Acids Res 2003, 31(13):3568-3571.
  • [34]Wang J, Smith PJ, Krainer AR, Zhang MQ: Distribution of SR protein exonic splicing enhancer motifs in human protein-coding genes. Nucleic Acids Res 2005, 33(16):5053-5062.
  • [35]Zuker M: Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 2003, 31(13):3406-3415. http://mfold.rna.albany.edu/ webcite
  • [36]Hiller M, Zhang Z, Backofen R, Stamm S: Pre-mRNA secondary structures influence exon recognition. PLoS Genet 2007, 3(11):e204.
  • [37]Lewis BP, Green RE, Brenner SE: Evidence for the widespread coupling of alternative splicing and nonsense-mediated mRNA decay in humans. Proc Natl Acad Sci USA 2003, 100(1):189-192.
  • [38]Chester A, Somasekaram A, Tzimina M, Jarmuz A, Gisbourne J, O’Keefe R, Scott J, Navaratnam N: The apolipoprotein B mRNA editing complex performs a multifunctional cycle and suppresses nonsense-mediated decay. EMBO J 2003, 22(15):3971-3982.
  • [39]Caputi M, Casari G, Guenzi S, Tagliabue R, Sidoli A, Melo CA, Baralle FE: A novel bipartite splicing enhancer modulates the differential processing of the human fibronectin EDA exon. Nucleic Acids Res 1994, 22(6):1018-1022.
  • [40]Staffa A, Acheson NH, Cochrane A: Novel exonic elements that modulate splicing of the human fibronectin EDA exon. J Biol Chem 1997, 272(52):33394-33401.
  • [41]Benn M, Stene MC, Nordestgaard BG, Jensen GB, Steffensen R, Tybjaerg-Hansen A: Common and rare alleles in apolipoprotein B contribute to plasma levels of low-density lipoprotein cholesterol in the general population. J Clin Endocrinol Metab 2008, 93(3):1038-1045.
  • [42]Cartegni L, Chew SL, Krainer AR: Listening to silence and understanding nonsense: exonic mutations that affect splicing. Nat Rev Genet 2002, 3(4):285-298.
  • [43]Ensembl Genome Browser. http://www.ensembl.org/index.html webcite
  • [44]A similar algorithm, Splice Site Finder-Like, is implemented in Alamut software. Rouen, France: Interactive Biosoftware LLC; http://www.interactive-biosoftware.com webcite
  • [45]ESEfinder. http://rulai.cshl.edu/tools/ESE/ webcite
  • [46]RESCUE-ESE web server. http://genes.mit.edu/burgelab/rescue-ese/ webcite
  • [47]FAS-ESS web server. http://genes.mit.edu/fas-ess webcite
  • [48]PESx web server. http://cubweb.biology.columbia.edu/pesx/ webcite
  • [49]Chew SL, Baginsky L, Eperon IC: An exonic splicing silencer in the testes-specific DNA ligase III beta exon. Nucleic Acids Res 2000, 28(2):402-410.
  • [50]Horton RM, Cai ZL, Ho SN, Pease LR: Gene splicing by overlap extension: tailor-made genes using the polymerase chain reaction. Biotechniques 1990, 8(5):528-535.
  • [51]Contreras R, Cheroutre H, Degrave W, Fiers W: Simple, efficient in vitro synthesis of capped RNA useful for direct expression of cloned eukaryotic genes. Nucleic Acids Res 1982, 10(20):6353-6362.
  • [52]Mayeda A, Krainer AR: Mammalian in vitro splicing assays. Methods Mol Biol 1999, 118:315-321.
  文献评价指标  
  下载次数:37次 浏览次数:16次