期刊论文详细信息
BMC Research Notes
Identification of conserved RNA secondary structures at influenza B and C splice sites reveals similarities and differences between influenza A, B, and C
Douglas H Turner1  Walter N Moss1  Lumbini I Dela-Moss1 
[1] Department of Chemistry and Center for RNA Biology, University of Rochester, Rochester, New York 14627-0216, USA
关键词: Splicing;    Bioinformatics;    Splice sites;    Secondary structure;    RNA;    Influenza;   
Others  :  1134875
DOI  :  10.1186/1756-0500-7-22
 received in 2013-05-22, accepted in 2014-01-02,  发布年份 2014
PDF
【 摘 要 】

Background

Influenza B and C are single-stranded RNA viruses that cause yearly epidemics and infections. Knowledge of RNA secondary structure generated by influenza B and C will be helpful in further understanding the role of RNA structure in the progression of influenza infection.

Findings

All available protein-coding sequences for influenza B and C were analyzed for regions with high potential for functional RNA secondary structure. On the basis of conserved RNA secondary structure with predicted high thermodynamic stability, putative structures were identified that contain splice sites in segment 8 of influenza B and segments 6 and 7 of influenza C. The sequence in segment 6 also contains three unused AUG start codon sites that are sequestered within a hairpin structure.

Conclusions

When added to previous studies on influenza A, the results suggest that influenza splicing may share common structural strategies for regulation of splicing. In particular, influenza 3′ splice sites are predicted to form secondary structures that can switch conformation to regulate splicing. Thus, these RNA structures present attractive targets for therapeutics aimed at targeting one or the other conformation.

【 授权许可】

   
2014 Dela-Moss et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150306092645782.pdf 2344KB PDF download
Figure 6. 620KB Image download
Figure 5. 629KB Image download
Figure 4. 632KB Image download
Figure 3. 624KB Image download
Figure 2. 631KB Image download
Figure 1. 608KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Thompson WW, Shay DK, Weintraub E, Brammer L, Bridges CB, Cox NJ, Fukuda K: Infleunza-associated hospitilizations in the United States. JAMA 2004, 292:1333-1340.
  • [2]Thompson MG, Shay DK, Zhou H, Bridges CB, Cheng PY, Burns E, Bresee JS, Cox NJ: Centers for Disease Control and Prevention. Estimates of deaths associated with seasonal influenza - United States, 1976–2007. MMWR 2010, 59:1057-1062.
  • [3]Bouvier NM, Palese P: The biology of influenza viruses. Vaccine 2008, 26:D49-D53.
  • [4]McCauley JW, Hongo S, Kaverin NV, Kochs G, Lamb RA, Matrosovich MN, Perez DR, Palese P, Presti RM, Rimstad E: Virus taxonomy: classification and nomenclature of viruses: Ninth Report of the International Committee on Taxonomy of Viruses. 1st edition. Edited by King AMQ, Lefkowitz E, Adams MJ, Carstens EB. San Diego: Elsevier Academic Press; 2012:749-761.
  • [5]Ito T, Kawaoka Y: Host-range barrier of influenza A viruses. Vet Microbiol 2000, 74(1–2):71-75.
  • [6]Lamb RA: Influenza. In Encyclopedia of Virology. 3rd edition. Edited by Mahy BWJ, van Regenmortel MHV. Academic Press; 2008:95-104.
  • [7]Hay AJ, Gregory V, Douglas AR, Lin YP: The evolution of human influenza viruses. Philos Trans R Soc Lond B Biol Sci 2001, 356(1416):1861-1870.
  • [8]Shaw ML, Palese P: Orthomyxoviruses: Molecular Biology. In: Encyclopedia of Virology. Third Edition edn; 2008:483-489.
  • [9]Rota PA, Wallis TR, Harmon MW, Rota JS, Kendal AP, Nerome K: Cocirculation of two distinct evolutionary lineages of influenza type B virus since 1983. Virology 1990, 175(1):59-68.
  • [10]Lee BY, Bartsch SM, Willig AM: The economic value of a quadrivalent versus trivalent influenza vaccine. Vaccine 2012, 30(52):7443-7446.
  • [11]Ambrose CS, Levin MJ: The rationale for quadrivalent influenza vaccines. Human Vaccines & Immunotherapeutics 2012, 8(1):81-88.
  • [12]Kieft JS: Viral IRES RNA structures and ribosome interactions. Trends Biochem Sci 2008, 33(6):274-283.
  • [13]Martinez-Salas E, Ramos R, Lafuente E, Lopez de Quinto S: Functional interactions in internal translation initiation directed by viral and cellular IRES elements. J Gen Virol 2001, 82:973-984.
  • [14]Clyde K, Harris E: RNA secondary structure in the coding region of dengue virus type 2 directs translation start codon selection and is required for viral replication. J Virol 2006, 80(5):2170-2182.
  • [15]Clever J, Sassetti C, Parslow TG: RNA secondary structure and binding sites for gag gene products in the 5' packaging signal of human immunodeficiency virus type 1. J Virol 1995, 69:2101-2109.
  • [16]Linnstaedt SD, Kasprzak WK, Shapiro BA, Casey JL: The role of a metastable RNA secondary structure in hepatitis delta virus genotype III RNA editing. RNA 2006, 12(8):1521-1533.
  • [17]Abbink TE, Berkhout B: RNA structure modulates splicing efficiency at the human immunodeficiency virus type 1 major splice donor. J Virol 2008, 82(6):3090-3098.
  • [18]Cabello-Villegas J, Giles KE, Soto AM, Yu P, Mougin A, Beemon KL, Wang YX: Solution structure of the pseudo-5' splice site of a retroviral splicing suppressor. RNA 2004, 10(9):1388-1398.
  • [19]Zychlinski D, Erkelenz S, Melhorn V, Baum C, Schaal H, Bohne J: Limited complementarity between U1 snRNA and a retroviral 5' splice site permits its attenuation via RNA secondary structure. Nucleic Acids Res 2009, 37(22):7429-7440.
  • [20]Brierley I, Gilbert RJ, Pennell S: RNA pseudoknots and the regulation of protein synthesis. Biochem Soc Trans 2008, 36(Pt 4):684-689.
  • [21]Liu B, Mathews DH, Turner DH: RNA pseudoknots: folding and finding. F1000 Biology Reports 2010, 2:8.
  • [22]Staple DW, Butcher SE: Pseudoknots: RNA structures with diverse functions. PLoS Biol 2005, 3(6):e213.
  • [23]Brierley I, Pennell S, Gilbert RJ: Viral RNA pseudoknots: versatile motifs in gene expression and replication. Nat Rev Microbiol 2007, 5(8):598-610.
  • [24]Giedroc DP, Cornish PV: Frameshifting RNA pseudoknots: structure and mechanism. Virus Res 2009, 139(2):193-208.
  • [25]Desselberger U, Racaniello VR, Zazra JJ, Palese P: The 3' and 5'-terminal sequences of influenza A, B, and C virus RNA segments are highly conserved and show partial inverted complementarity. Gene 1980, 8:315-328.
  • [26]Flick R, Neumann G, Hoffman E, Neumeier E, Hobom G: Promoter elements in the influenza vRNA terminal structure. RNA 1996, 2:1046-1057.
  • [27]Noble E, Mathews DH, Chen JL, Turner DH, Takimoto T, Kim B: Biophysical analysis of influenza A virus RNA promoter at physiological temperatures. J Biol Chem 2011, 286(26):22965-22970.
  • [28]Cheong H, Cheong C, Choi B: Secondary structure of the panhandle RNA of influenza virus A studied by NMR spectroscopy. Nucleic Acids Res 1996, 24:4197-4201.
  • [29]Brownlee GG, Sharps JL: The RNA polymerase of influenza A virus is stabilized by interaction with its viral RNA promoter. J Virol 2002, 76(14):7103-7113.
  • [30]Crow M, Deng T, Addley M, Brownlee GG: Mutational analysis of the influenza virus cRNA promoter and identification of nucleotides critical for replication. J Virol 2004, 78(12):6263-6270.
  • [31]Mathews DH, Moss WN, Turner DH: Folding and finding RNA secondary structure. Cold Spring Harb Perspect Biol 2010, 2(12):a003665.
  • [32]Schroeder S: Advances in RNA structure prediction from sequence: new tools for generating hypotheses about viral RNA structure-function relationships. J Virol 2009, 83:6326-6334.
  • [33]Gorodkin J, Hofacker IL, Torarinsson E, Yao Z, Havgaard JH, Ruzzo WL: De novo prediction of structured RNAs from genomic sequences. Trends Biotechnol 2010, 28(1):9-19.
  • [34]Pedersen JS, Meyer IM, Forsberg R, Simmonds P, Hein J: A comparative method for finding and folding RNA secondary structures within protein-coding regions. Nucleic Acids Res 2004, 32(16):4925-4936.
  • [35]Lange SJ, Maticzka D, Mohl M, Gagnon JN, Brown CM, Backofen R: Global or local? Predicting secondary structure and accessibility in mRNAs. Nucleic Acids Res 2012, 40(12):5215-5226.
  • [36]Findeiss S, Engelhardt J, Prohaska SJ, Stadler PF: Protein-coding structured RNAs: A computational survey of conserved RNA secondary structures overlapping coding regions in drosophilids. Biochimie 2011, 93(11):2019-2023.
  • [37]Moss WN, Priore SF, Turner DH: Identification of potential conserved RNA secondary structure throughout influenza A coding regions. RNA 2011, 17(6):991-1011.
  • [38]Washietl S, Hofacker IL, Lukasser M, Huttenhofer A, Stadler PF: Mapping of conserved RNA secondary structures predicts thousands of functional noncoding RNAs in the human genome. Nat Biotechnol 2005, 23(11):1383-1390.
  • [39]Washietl S, Hofacker IL, Stadler PF: Fast and reliable prediction of noncoding RNAs. Proc Natl Acad Sci USA 2005, 102(7):2454-2459.
  • [40]Gruber AR, Findeiss S, Washietl S, Hofacker IL, Stadler PF: RNAz 2.0: improved noncoding RNA detection. Pac Symp Biocomput 2010, 15:69-79.
  • [41]Simmonds P, Smith DB: Structural constraints on RNA virus evolution. J Virol 1999, 73(7):5787-5794.
  • [42]Tuplin A, Evans DJ, Simmonds P: Detailed mapping of RNA secondary structures in core and NS5B-encoding region sequences of hepatitis C virus by RNase cleavage and novel bioinformatic prediction methods. J Gen Virol 2004, 85(Pt 10):3037-3047.
  • [43]Gultyaev AP, Heus HA, Olsthoorn RC: An RNA conformational shift in recent H5N1 influenza A viruses. Bioinformatics 2007, 23(3):272-276.
  • [44]Gultyaev AP, Olsthoorn RC: A family of non-classical pseudoknots in influenza A and B viruses. RNA Biol 2010, 7(2):125-129.
  • [45]Ilyinskii PO, Schmidt T, Lukashev D, Meriin AB, Thoidis G, Frishman D, Shneider AM: Importance of mRNA secondary structural elements for the expression of influenza virus genes. OMICS 2009, 13(5):421-430.
  • [46]Bao Y, Bolotov P, Dernovoy D, Kiryutin B, Zaslavsky L, Tatusova T, Ostell J, Lipman D: The influenza virus resource at the National Center for Biotechnology Information. J Virol 2008, 82(2):596-601.
  • [47]Gouy M, Guindon S, Gascuel O: SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol 2010, 27(2):221-224.
  • [48]Galtier N, Gouy M, Gautier C: SEAVIEW and PHYLO_WIN: two graphic tools for sequence alignment and molecular phylogeny. Comput Appl Biosci 1996, 12(6):543-548.
  • [49]Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, et al.: Clustal W and Clustal X version 2.0. Bioinformatics 2007, 23(21):2947-2948.
  • [50]Katoh K, Kuma K, Toh H, Miyata T: MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Res 2005, 33(2):511-518.
  • [51]Katoh K, Misawa K, Kuma K, Miyata T: MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 2002, 30(14):3059-3066.
  • [52]Bernhart SH, Hofacker IL, Will S, Gruber AR, Stadler PF: RNAalifold: improved consensus structure prediction for RNA alignments. BMC Bioinformatics 2008, 9:474. BioMed Central Full Text
  • [53]Mathews DH, Sabina J, Zuker M, Turner DH: Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J Mol Biol 1999, 288(5):911-940.
  • [54]Reuter JS, Mathews DH: RNAstructure: software for RNA secondary structure prediction and analysis. BMC Bioinformatics 2010, 11:129. BioMed Central Full Text
  • [55]Mathews DH, Disney MD, Childs JL, Schroeder SJ, Zuker M, Turner DH: Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA secondary structure. Proc Natl Acad Sci U S A 2004, 101(19):7287-7292.
  • [56]Mathews DH: Revolutions in RNA secondary structure prediction. J Mol Biol 2006, 359(3):526-532.
  • [57]Mathews DH: Using an RNA secondary structure partition function to determine confidence in base pairs predicted by free energy minimization. RNA 2004, 10(8):1178-1190.
  • [58]Parisien M, Major F: The MC-Fold and MC-Sym pipeline infers RNA structure from sequence data. Nature 2008, 452(7183):51-55.
  • [59]Sperschneider J, Datta A: DotKnot: pseudoknot prediction using the probability dot plot under a refined energy model. Nucleic Acids Res 2010, 38(7):e103.
  • [60]Xia T, SantaLucia J Jr, Burkard ME, Kierzek R, Schroeder SJ, Jiao X, Cox C, Turner DH: Thermodynamic parameters for an expanded nearest-neighbor model for formation of RNA duplexes with Watson-Crick base pairs. Biochemistry 1998, 37(42):14719-14735.
  • [61]Cao S, Chen SJ: Predicting RNA pseudoknot folding thermodynamics. Nucleic Acids Res 2006, 34(9):2634-2652.
  • [62]Cao S, Chen SJ: Predicting structures and stabilities for H-type pseudoknots with interhelix loops. RNA 2009, 15(4):696-706.
  • [63]Buonagurio DA, Nakada S, Fitch WM, Palese P: Epidemiology of influenza C virus in man: multiple evolutionary lineages and low rate of change. Virology 1986, 153(1):12-21.
  • [64]Nobusawa E, Sato K: Comparison of the mutation rates of human influenza A and B viruses. J Virol 2006, 80(7):3675-3678.
  • [65]Yamashita M, Krystal M, Fitch WM, Palese P: Influenza B virus evolution: co-circulating lineages and comparison of evolutionary pattern with those of influenza A and C viruses. Virology 1988, 163(1):112-122.
  • [66]Air GM, Gibbs AJ, Laver WG, Webster RG: Evolutionary changes in influenza B are not primarily governed by antibody selection. Proc Natl Acad Sci U S A 1990, 87(10):3884-3888.
  • [67]Suzuki Y, Nei M: Origin and evolution of influenza virus hemagglutinin genes. Mol Biol Evol 2002, 19(4):501-509.
  • [68]Paragas J, Talon J, O'Neill RE, Anderson DK, Garcia-Sastre A, Palese P: Influenza B and C virus NEP (NS2) proteins possess nuclear export activities. J Virol 2001, 75(16):7375-7383.
  • [69]Robb NC, Smith M, Vreede FT, Fodor E: NS2/NEP protein regulates transcription and replication of the influenza virus RNA genome. J Gen Virol 2009, 90(Pt 6):1398-1407.
  • [70]Warf MB, Berglund JA: Role of RNA structure in regulating pre-mRNA splicing. Trends Biochem Sci 2010, 35(3):169-178.
  • [71]Blanchette M, Chabot B: A highly stable duplex structure sequesters the 5' splice site region of hnRNP A1 alternative exon 7B. RNA 1997, 3(4):405-419.
  • [72]Singh NN, Singh RN, Androphy EJ: Modulating role of RNA structure in alternative splicing of a critical exon in the spinal muscular atrophy genes. Nucleic Acids Res 2007, 35(2):371-389.
  • [73]Coleman TP, Roesser JR: RNA secondary structure: an important cis-element in rat calcitonin/CGRP pre-messenger RNA splicing. Biochemistry 1998, 37(45):15941-15950.
  • [74]Hermann T, Westhof E: Non-Watson-Crick base pairs in RNA-protein recognition. Chem Biol 1999, 6(12):R335-R343.
  • [75]Giver L, Bartel DP, Zapp ML, Green MR, Ellington AD: Selection and design of high-affinity RNA ligands for HIV-1 Rev. Gene 1993, 137(1):19-24.
  • [76]Jang SB, Hung LW, Chi YI, Holbrook EL, Carter RJ, Holbrook SR: Structure of an RNA internal loop consisting of tandem C-A + base pairs. Biochemistry 1998, 37(34):11726-11731.
  • [77]Wilcox JL, Bevilacqua PC: A Simple Fluorescence Method for pK(a) Determination in RNA and DNA Reveals Highly Shifted pK(a)'s. J Am Chem Soc 2013, 135(20):7390-7393.
  • [78]Chen G, Kennedy SD, Turner DH: A CA(+) pair adjacent to a sheared GA or AA pair stabilizes size-symmetric RNA internal loops. Biochemistry 2009, 48(24):5738-5752.
  • [79]Bink HH, Hellendoorn K, van der Meulen J, Pleij CW: Protonation of non-Watson-Crick base pairs and encapsidation of turnip yellow mosaic virus RNA. Proc Natl Acad Sci USA 2002, 99(21):13465-13470.
  • [80]Priore SF, Kierzek E, Kierzek R, Baman JR, Moss WN, Dela-Moss LI, Turner DH: Secondary structure of a conserved domain in the intron of influenza A NS1 mRNA. PloS ONE 2013, 8(9):e70615.
  • [81]Yamashita M, Krystal M, Palese P: Evidence that the matrix protein of influenza C virus is coded for by a spliced mRNA. J Virol 1988, 62(9):3348-3355.
  • [82]Sidrauski C, Walter P: The transmembrane kinase Ire1p is a site-specific endonuclease that initiates mRNA splicing in the unfolded protein response. Cell 1997, 90(6):1031-1039.
  • [83]Muro AF, Caputi M, Pariyarath R, Pagani F, Buratti E, Baralle FE: Regulation of fibronectin EDA exon alternative splicing: possible role of RNA secondary structure for enhancer display. Mol Cell Biol 1999, 19(4):2657-2671.
  • [84]Buratti E, Muro AF, Giombi M, Gherbassi D, Iaconcig A, Baralle FE: RNA folding affects the recruitment of SR proteins by mouse and human polypurinic enhancer elements in the fibronectin EDA exon. Mol Cell Biol 2004, 24(3):1387-1400.
  • [85]Hiller M, Zhang Z, Backofen R, Stamm S: Pre-mRNA secondary structures influence exon recognition. PLoS Genet 2007, 3(11):e204.
  • [86]Stewart SM, Pekosz A: The influenza C virus CM2 protein can alter intracellular pH, and its transmembrane domain can substitute for that of the influenza A virus M2 protein and support infectious virus production. J Virol 2012, 86(2):1277-1281.
  • [87]Furukawa T, Muraki Y, Noda T, Takashita E, Sho R, Sugawara K, Matsuzaki Y, Shimotai Y, Hongo S: Role of the CM2 protein in the influenza C virus replication cycle. J Virol 2011, 85(3):1322-1329.
  • [88]Hongo S, Sugawara K, Muraki Y, Kitame F, Nakamura K: Characterization of a second protein (CM2) encoded by RNA segment 6 of influenza C virus. J Virol 1997, 71(4):2786-2792.
  • [89]Pekosz A, Lamb RA: The CM2 protein of influenza C virus is an oligomeric integral membrane glycoprotein structurally analogous to influenza A virus M2 and influenza B virus NB proteins. Virology 1997, 237(2):439-451.
  • [90]Hongo S, Sugawara K, Nishimura H, Muraki Y, Kitame F, Nakamura K: Identification of a second protein encoded by influenza C virus RNA segment 6. J Gen Virol 1994, 75(Pt 12):3503-3510.
  • [91]Pekosz A, Lamb RA: Influenza C virus CM2 integral membrane glycoprotein is produced from a polypeptide precursor by cleavage of an internal signal sequence. Proc Natl Acad Sci USA 1998, 95(22):13233-13238.
  • [92]Hongo S, Sugawara K, Muraki Y, Matsuzaki Y, Takashita E, Kitame F, Nakamura K: Influenza C virus CM2 protein is produced from a 374-amino-acid protein (P42) by signal peptidase cleavage. J Virol 1999, 73(1):46-50.
  • [93]Slobodskaya OR, Gmyl AP, Maslova SV, Tolskaya EA, Viktorova EG, Agol VI: Poliovirus neurovirulence correlates with the presence of a cryptic AUG upstream of the initiator codon. Virology 1996, 221(1):141-150.
  • [94]Verma B, Ponnuswamy A, Gnanasundram SV, Das S: Cryptic AUG is important for 48S ribosomal assembly during internal initiation of translation of coxsackievirus B3 RNA. J Gen Virol 2011, 92(Pt 10):2310-2319.
  • [95]Pavlakis GN, Lockard RE, Vamvakopoulos N, Rieser L, RajBhandary UL, Vournakis JN: Secondary structure of mouse and rabbit alpha- and beta-globin mRNAs: differential accessibility of alpha and beta initiator AUG codons towards nucleases. Cell 1980, 19(1):91-102.
  • [96]Kozak M: Regulation of translation via mRNA structure in prokaryotes and eukaryotes. Gene 2005, 361:13-37.
  • [97]Kudla G, Murray AW, Tollervey D, Plotkin JB: Coding-sequence determinants of gene expression in Escherichia coli. Science 2009, 324(5924):255-258.
  • [98]Moss WN, Dela-Moss LI, Kierzek E, Kierzek R, Priore SF, Turner DH: The 3' splice site of influenza A segment 7 mRNA can exist in two conformations: a pseudoknot and a hairpin. PLoS ONE 2012, 7(6):e38323.
  • [99]Moss WN, Dela-Moss LI, Priore SF, Turner DH: The influenza A segment 7 mRNA 3' splice site pseudoknot/hairpin family. RNA Biol 2012, 9(11):1305-1310.
  • [100]Warf MB, Diegel JV, von Hippel PH, Berglund JA: The protein factors MBNL1 and U2AF65 bind alternative RNA structures to regulate splicing. Proc Natl Acad Sci USA 2009, 106(23):9203-9208.
  • [101]Honig A, Auboeuf D, Parker MM, O'Malley BW, Berget SM: Regulation of alternative splicing by the ATP-dependent DEAD-box RNA helicase p72. Mol Cell Biol 2002, 22(16):5698-5707.
  • [102]Cheah MT, Wachter A, Sudarsan N, Breaker RR: Control of alternative RNA splicing and gene expression by eukaryotic riboswitches. Nature 2007, 447(7143):497-500.
  • [103]Winkler W, Nahvi A, Breaker RR: Thiamine derivatives bind messenger RNAs directly to regulate bacterial gene expression. Nature 2002, 419(6910):952-956.
  • [104]Nemeroff ME, Utans U, Kramer A, Krug RM: Identification of cis-acting intron and exon regions in influenza virus NS1 mRNA that inhibit splicing and cause the formation of aberrantly sedimenting presplicing complexes. Mol Cell Biol 1992, 12(3):962-970.
  • [105]Plotch SJ, Krug RM: In vitro splicing of influenza viral NS1 mRNA and NS1-beta-globin chimeras: possible mechanisms for the control of viral mRNA splicing. Proc Natl Acad Sci U S A 1986, 83(15):5444-5448.
  • [106]Havens MA, Duelli DM, Hastings ML: Targeting RNA splicing for disease therapy. Wiley Interdiscip Rev RNA 2013.
  • [107]Mei HY, Cui M, Heldsinger A, Lemrow SM, Loo JA, Sannes-Lowery KA, Sharmeen L, Czarnik AW: Inhibitors of protein-RNA complexation that target the RNA: specific recognition of human immunodeficiency virus type 1 TAR RNA by small organic molecules. Biochemistry 1998, 37(40):14204-14212.
  • [108]Sucheck SJ, Wong CH: RNA as a target for small molecules. Curr Opin Chem Biol 2000, 4(6):678-686.
  • [109]Wilson WD, Li K: Targeting RNA with small molecules. Curr Med Chem 2000, 7(1):73-98.
  • [110]Disney MD, Labuda LP, Paul DJ, Poplawski SG, Pushechnikov A, Tran T, Velagapudi SP, Wu M, Childs-Disney JL: Two-dimensional combinatorial screening identifies specific aminoglycoside-RNA internal loop partners. J Am Chem Soc 2008, 130(33):11185-11194.
  • [111]Labuda LP, Pushechnikov A, Disney MD: Small molecule microarrays of RNA-focused peptoids help identify inhibitors of a pathogenic group I intron. ACS Chem Biol 2009, 4(4):299-307.
  • [112]Childs JL, Disney MD, Turner DH: Oligonucleotide directed misfolding of RNA inhibits Candida albicans group I intron splicing. Proc Natl Acad Sci USA 2002, 99(17):11091-11096.
  • [113]Disney MD, Childs JL, Turner DH: New approaches to targeting RNA with oligonucleotides: inhibition of group I intron self-splicing. Biopolymers 2004, 73(1):151-161.
  • [114]Kierzek E: Binding of short oligonucleotides to RNA: studies of the binding of common RNA structural motifs to isoenergetic microarrays. Biochemistry 2009, 48(48):11344-11356.
  • [115]Watrin M, Dausse E, Lebars I, Rayner B, Bugaut A, Toulme JJ: Aptamers targeting RNA molecules. Methods Mol Biol 2009, 535:79-105.
  文献评价指标  
  下载次数:58次 浏览次数:11次