BMC Neuroscience | |
Schwann cells migrate along axons in the absence of GDNF signaling | |
Kerstin Krieglstein4  Markus H Schwab2  Katalin Zajzon1  Björn Spittau1  Stephan Heermann3  | |
[1] Department of Molecular Embryology Institute of Anatomy and Cell Biology, University of Freiburg, Freiburg, Germany;Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany;Current address: COS Heidelberg, INF, 230 69120, Heidelberg, Germany;FRIAS, University of Freiburg, Freiburg, Germany | |
关键词: PP2; GDNF; Proliferation; Migration; Schwann cell development; | |
Others : 1170589 DOI : 10.1186/1471-2202-13-92 |
|
received in 2012-06-12, accepted in 2012-07-19, 发布年份 2012 | |
【 摘 要 】
Background
During development neural crest derived Schwann Cell (SC) precursors migrate to nerve trunks and populate nascent nerves. Axonal ensheathment by SC is a prerequisite for normal nerve function and the integrity of myelinated as well as nonmyelinated axons. To provide adequate support functions, SC colonize entire nerves. One important prerequisite for this is their migration into distal axonal regions.
Results
Here, we studied the role of Glial cell line derived neurotrophic factor (GDNF), a TGF-beta related growth factor, for SC migration. To this end we used a superior cervical ganglion (SCG) explant-SC migration assay, GDNF null mutant mouse embryos and a chemical inhibitor for GDNF signaling in combination with time-lapse imaging. We found that GDNF signaling is dispensable for SC migration along murine embryonic sympathetic axons. Furthermore, in vivo analyzes revealed that SC migration along the sciatic nerve is also not dependent on GDNF.
Conclusions
In contrast to previous in vitro findings in the sciatic nerve and a SC precursor cell line, our results clearly indicate that GDNF is dispensable for embryonic SC migration. This is demonstrated for the sympathetic nervous system and also for the sciatic nerve in mouse.
【 授权许可】
2012 Heermann et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20151023022002527.pdf | 471KB | download | |
Figure 7 . | 54KB | Image | download |
Figure 6 . | 195KB | Image | download |
Figure 5 . | 111KB | Image | download |
Figure 4 . | 140KB | Image | download |
Figure 4. | 30KB | Image | download |
Figure 2 . | 94KB | Image | download |
Figure 1. | 143KB | Image | download |
【 图 表 】
Figure 1.
Figure 2 .
Figure 4.
Figure 4 .
Figure 5 .
Figure 6 .
Figure 7 .
【 参考文献 】
- [1]Woodhoo A, Sommer L: Development of the Schwann cell lineage: from the neural crest to the myelinated nerve. Glia 2008, 56(14):1481-1490.
- [2]Nave K-A, Trapp BD: Axon-glial signaling and the glial support of axon function. Annu Rev Neurosci 2008, 31:535-561.
- [3]Scherer SS, Wrabetz L: Molecular mechanisms of inherited demyelinating neuropathies. Glia 2008, 56(14):1578-1589.
- [4]Dong Z, Brennan A, Liu N, Yarden Y, Lefkowitz G, Mirsky R, Jessen KR: Neu differentiation factor is a neuron-glia signal and regulates survival, proliferation, and maturation of rat Schwann cell precursors. Neuron 1995, 15(3):585-596. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/7546738 webcite
- [5]D’Antonio M, Droggiti A, Feltri ML, Roes J, Wrabetz L, Mirsky R, Jessen KR: TGFbeta type II receptor signaling controls Schwann cell death and proliferation in developing nerves. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience 2006, 26(33):8417-8427.
- [6]Grinspan JB, Marchionni MA, Reeves M, Coulaloglou M, Scherer SS: Axonal interactions regulate Schwann cell apoptosis in developing peripheral nerve: neuregulin receptors and the role of neuregulins. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience 1996, 16(19):6107-6118. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/8815893 webcite
- [7]Heermann S, Schmücker J, Hinz U, Rickmann M, Unterbarnscheidt T, Schwab MH, Krieglstein K: Neuregulin 1 Type III/ErbB Signaling Is Crucial for Schwann Cell Colonization of Sympathetic Axons. PLoS One 2011, 6(12):e28692.
- [8]Garratt AN, Britsch S, Birchmeier C: Neuregulin, a factor with many functions in the life of a schwann cell. BioEssays: News and Reviews in Molecular, Cellular and Developmental Biology 2000, 22(11):987-996.
- [9]Mahanthappa NK, Anton ES, Matthew WD: Glial growth factor 2, a soluble neuregulin, directly increases Schwann cell motility and indirectly promotes neurite outgrowth. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience 1996, 16(15):4673-4683. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/8764655 webcite
- [10]Meintanis S, Thomaidou D, Jessen KR, Mirsky R, Matsas R: The neuron-glia signal beta-neuregulin promotes Schwann cell motility via the MAPK pathway. Glia 2001, 34(1):39-51. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/11284018 webcite
- [11]Cornejo M, Nambi D, Walheim C, Somerville M, Walker J, Kim L, Ollison L, et al.: Effect of NRG1, GDNF, EGF and NGF in the Migration of a Schwann Cell Precursor Line. Neurochem Res 2010, 35(10):1643-1651.
- [12]Lobsiger CS, Smith PM, Buchstaller J, Schweitzer B, Franklin RJ, Suter U, Taylor V: SpL201: a conditionally immortalized Schwann cell precursor line that generates myelin. Glia 2001, 36(1):31-47. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/11571782 webcite
- [13]Lyons DA, Pogoda H-M, Voas MG, Woods IG, Diamond B, Nix R, Arana N, et al.: erbb3 and erbb2 are essential for schwann cell migration and myelination in zebrafish. Current Biology: CB 2005, 15(6):513-524.
- [14]Perlin JR, Lush ME, Stephens WZ, Piotrowski T, Talbot WS: Neuronal Neuregulin 1 type III directs Schwann cell migration. Development 2011, 138(21):4639-4648.
- [15]Sariola H, Saarma M: Novel functions and signalling pathways for GDNF. J Cell Sci 2003, 116(Pt 19):3855-3862.
- [16]Paratcha G, Ledda F, Ibáñez CF: The neural cell adhesion molecule NCAM is an alternative signaling receptor for GDNF family ligands. Cell 2003, 113(7):867-879. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/12837245 webcite
- [17]Levi-Montalcini R, Booker B: Excessive growth of the sympathetic ganglia evoked by a protein isolated from mouse salivary glands. Proc Natl Acad Sci USA 1960, 46(3):373-384. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/16578496 webcite
- [18]Pichel JG, Shen L, Sheng HZ, Granholm AC, Drago J, Grinberg A, Lee EJ, et al.: Defects in enteric innervation and kidney development in mice lacking GDNF. Nature 1996, 382(6586):73-76.
- [19]Ebendal T: Use of collagen gels to bioassay nerve growth factor activity. Edited by RA R. John Wiley & Sons .Ltd, ; 1989:81-93. IBRO Handh
- [20]Hanke JH, Gardner JP, Dow RL, Changelian PS, Brissette WH, Weringer EJ, Pollok BA, et al.: Discovery of a novel, potent, and Src family-selective tyrosine kinase inhibitor. Study of Lck- and FynT-dependent T cell activation. J Biol Chem 1996, 271(2):695-701. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/8557675 webcite
- [21]Peterziel H, Unsicker K, Krieglstein K: TGFbeta induces GFND responsiveness in neurons by recruitment of GFRalpha1 to the plasma membrane. J Cell Biol 2002, 159(1):157-167. Epub 2002 Oct 7
- [22]Jessen KR, Mirsky R: The origin and development of glial cells in peripheral nerves. Nat Rev Neurosci 2005, 6(9):671-682.
- [23]Birchmeier C, Nave K-A: Neuregulin-1, a key axonal signal that drives Schwann cell growth and differentiation. Glia 2008, 56(14):1491-1497.
- [24]Jessen KR, Mirsky R: Negative regulation of myelination: relevance for development, injury, and demyelinating disease. Glia 2008, 56(14):1552-1565.
- [25]Britsch S, Li L, Kirchhoff S, Theuring F, Brinkmann V, Birchmeier C, Riethmacher D: The ErbB2 and ErbB3 receptors and their ligand, neuregulin-1, are essential for development of the sympathetic nervous system. Genes Dev 1998, 12(12):1825-1836. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/9637684 webcite
- [26]Hase A, Saito F, Yamada H, Arai K, Shimizu T, Matsumura K: Characterization of glial cell line-derived neurotrophic factor family receptor alpha-1 in peripheral nerve Schwann cells. J Neurochem 2005, 95(2):537-543.
- [27]Iwase T, Jung CG, Bae H, Zhang M, Soliven B: Glial cell line-derived neurotrophic factor-induced signaling in Schwann cells. J Neurochem 2005, 94(6):1488-1499.
- [28]Esper RM, Loeb JA: Rapid axoglial signaling mediated by neuregulin and neurotrophic factors. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience 2004, 24(27):6218-6227.
- [29]Höke A, Ho T, Crawford TO, LeBel C, Hilt D, Griffin JW: Glial cell line-derived neurotrophic factor alters axon schwann cell units and promotes myelination in unmyelinated nerve fibers. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience 2003, 23(2):561-567. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/12533616 webcite
- [30]Brockes JP, Lemke GE, Balzer DRJ: Purification and preliminary characterization of a glial growth factor from the bovine pituitary. J Biol Chem 1980, 255(18):8374-8377. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/7410367 webcite
- [31]Lemke GE, Brockes JP: Identification and purification of glial growth factor. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience 1984, 4(1):75-83. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/6693948 webcite
- [32]Eckert JM, Byer SJ, Clodfelder-Miller BJ, Carroll SL: Neuregulin-1 beta and neuregulin-1 alpha differentially affect the migration and invasion of malignant peripheral nerve sheath tumor cells. Glia 2009, 57(14):1501-1520.
- [33]Pitcher GM, Kalia LV, Ng D, Goodfellow NM, Yee KT, Lambe EK, Salter MW: Schizophrenia susceptibility pathway neuregulin 1-ErbB4 suppresses Src upregulation of NMDA receptors. Nat Med 2011, 17(4):470-478.