期刊论文详细信息
BMC Complementary and Alternative Medicine
Ursolic and oleanolic acids as antimicrobial and immunomodulatory compounds for tuberculosis treatment
Rogelio Hernández-Pando1  Javier Torres4  Brenda Marquina1  Dulce Mata-Espinosa1  Mariana Meckes-Fischer3  María Eugenia Castro-Mussot2  Sonia López-García2  Jorge Cornejo-Garrido3  Julieta Luna-Herrera2  Adelina Jiménez-Arellanes3 
[1]Sección de Patología Experimental, Departamento de Patología, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Secretaría de Salud, Vasco de Quiroga 15, Col. Sección XVI, Tlalpan 14000 D.F, México
[2]Laboratorio de Inmunoquímica II, Depto. Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México 11340 D.F, México
[3]Unidad de Investigación Médica en Farmacología, Hospital de Especialidades, CMN Siglo XXI, IMSS, Ave Cuauhtémoc 330, Col. Doctores, México 06720 D.F, México
[4]Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, CMN Siglo XXI, IMSS, Ave Cuauhtémoc 330, Col. Doctores, México 06720 D.F, México
关键词: Medicinal plants;    Antimycobacterial activity;    Antitubercular activity;    Triterpenoids;   
Others  :  1220902
DOI  :  10.1186/1472-6882-13-258
 received in 2013-02-21, accepted in 2013-09-24,  发布年份 2013
PDF
【 摘 要 】

Background

New alternatives for the treatment of Tuberculosis (TB) are urgently needed and medicinal plants represent a potential option. Chamaedora tepejilote and Lantana hispida are medicinal plants from Mexico and their hexanic extracts have shown antimycobacterial activity. Bioguided investigation of these extracts showed that the active compounds were ursolic acid (UA) and oleanolic acid (OA).

Methods

The activity of UA and OA against Mycobacterium tuberculosis H37Rv, four monoresistant strains, and two drug-resistant clinical isolates were determined by MABA test. The intracellular activity of UA and OA against M. tuberculosis H37Rv and a MDR clinical isolate were evaluated in a macrophage cell line. Finally, the antitubercular activity of UA and OA was tested in BALB/c mice infected with M. tuberculosis H37Rv or a MDR strain, by determining pulmonary bacilli loads, tissue damage by automated histomorphometry, and expression of IFN-γ, TNF-α, and iNOS by quantitative RT-PCR.

Results

The in vitro assay showed that the UA/OA mixture has synergistic activity. The intracellular activity of these compounds against M. tuberculosis H37Rv and a MDR clinical isolate in a macrophage cell line showed that both compounds, alone and in combination, were active against intracellular mycobacteria even at low doses. Moreover, when both compounds were used to treat BALB/c mice with TB induced by H37Rv or MDR bacilli, a significant reduction of bacterial loads and pneumonia were observed compared to the control. Interestingly, animals treated with UA and OA showed a higher expression of IFN-γ and TNF-α in their lungs, than control animals.

Conclusion

UA and OA showed antimicrobial activity plus an immune-stimulatory effect that permitted the control of experimental pulmonary TB.

【 授权许可】

   
2013 Jiménez-Arellanes et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150725075738895.pdf 796KB PDF download
Figure 6. 34KB Image download
Figure 5. 44KB Image download
Figure 4. 33KB Image download
Figure 3. 58KB Image download
Figure 2. 38KB Image download
Figure 1. 16KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Koul A, Arnoult E, Lounis N, Guillemont J, Andries K: The challenge of new drug discovery for tuberculosis. Nature 2011, 469:483-490.
  • [2]Adhvaryu M, Vakharia B: Drug-resistants tuberculosis: emerging treatment options. Clin Pharmacol 2011, 3:51-67. doi:10.214/CPAA.S11597
  • [3]Lenaerts AJ, Degroote MA, Orme IM: Preclinical testing of new drugs for tuberculosis: current challenges. Trends Microbiol 2008, 16:48-54.
  • [4]Tomioka H: Current status of some antituberculosis drugs and the development of new antituberculous agents with special reference to their in vitro and in vivo antimicrobial activities. Curr Pharm Des 2006, 2006(12):4047-4070.
  • [5]Aguilar A, Camacho JR, Chino S, Jácquez P, López ME: Herbario Medicinal del IMSS. Informacion Etnobotanica. 1st edition. Editorial IMSS: México; 1994.
  • [6]Jimenez A, Meckes M, Alvarez V, Torres J, Parra R: Secondary metabolites from Chamaedora tepejilote (Palmae) are active against Mycobacterium tuberculosis. Phytother Res 2005, 19:320-322.
  • [7]Jimenez-Arellanes A, Meckes M, Ramirez R, Torres J, Luna-Herrera J: Activity against multidrug-resistant Mycobacterium tuberculosis in Mexican plants used to treat respiratory diseases. Phytother Res 2003, 17:903-908.
  • [8]Jimenez-Arellanes A, Meckes M, Torres J, Luna-Herrera J: Antimycobacterial triterpenoids from Lantana hispida (Verbenaceae). J Ethnopharmacol 2007, 111:202-205.
  • [9]Cantrell CL, Franzblau SG, Fischer NH: Antimycobacterial plant terpenoids. Planta Med 2001, 67:685-694.
  • [10]Okunade AL, Elvin-Lewis MP, Lewis WH: Natural antimycobacterial metabolites: current status. Phytochemistry 2004, 65:1017-1032.
  • [11]Copp BR, Pearce AN: Natural product growth inhibitors of Mycobacterium tuberculosis. Nat Prod Res 2004, 24:278-297.
  • [12]Fontanay S, Grare M, Mayer J, Finance C, Duval RE: Ursolic, oleanolic and betulinic acids: antibacterial spectra and selectivity indexes. J Ethnopharmacol 2008, 120:272-276.
  • [13]Szakiel A, Ruszkowski D, Grudniak A, Kurek A, Wolska KI, Doligalska M, Janiszowska W: Antibacterial and antiparasitic activity of oleanolic acid and its glycosides isolated from marigold (Calendula officinalis). Planta Med 2008, 74:1709-1715. doi:10.1055/s-0028-1088315
  • [14]Kashiwada Y, Wang HK, Nagao T, Kitanaka S, Yasuda I, Fujioka T, Yamagishi T, Cosentino LM, Kozuka M, Okabe H, Ikeshiro Y, Hu CQ, Yeh E, Lee KH: Anti-AIDS agents. 30. Anti-HIV activity of oleanolic acid, pomolic acid, and structurally related triterpenoids. J Nat Prod 1998, 61:1090-1095.
  • [15]Balanehru S, Nagarajan B: Protective effect of oleanolic acid and ursolic acid against lipid peroxidation. Biochem Int 1991, 24:981-990.
  • [16]Ovesná Z, Vachálková A, Horváthová K, Tóthová D: Pentacyclic triterpenoic acids: new chemoprotective compounds. Neoplasma 2004, 51:327-333.
  • [17]Saraswat B, Visen PK, Dayal R, Agarwal DP, Patnaik GK: Protective action of ursolic acid against chemical induced hepato-toxicity in rats. Indian J Pharmacol 1996, 28:232-239.
  • [18]Rodriguez JA, Astudillo I, Schmeda-Hirschmann G: Oleanolic acid promotes healing of acetic acid-induced chronic gastric lesions in rats. Pharmacol Res 2003, 48:291-294.
  • [19]You HJ, Choi CY, Kim JY, Park SJ, Hahm KS, Jeong HG: Ursolic acid enhances nitric oxide and tumor necrosis-alpha production via nuclear factor-kappa b activation in the resting macrophages. FEBS Lett 2001, 509:156-160.
  • [20]Choi CY, You HJ, Jeong HG: Nitric oxide and tumor necrosis factor-alfa production by oleanolic acid via nuclear factor kappaB activation in macrophages. Bioch Biophys Res Commun 2001, 288:49-55.
  • [21]Murakami S, Takashima H, Sato-Watanabe M, Chonan S, Yamamoto K, Saitoh M, Saito S, Yoshimura H, Sugawara K, Yang J, Gao N, Zhang X: Ursolic acid, an antagonist for transforming growth factor (TGF)-beta1. FEBS Lett 2004, 566:55-59.
  • [22]Yoshimura H, Sugawara K, Saito M, Saito S, Murakami S, Miyata N, Kawashima A, Morimoto S, Gao N, Zhang X, Yang J: In vitro TGF-beta1 antagonistic activity of ursolic acid and oleanolic acid isolated from Clerodendranthus spicatus. Planta Med 2003, 69:673-675.
  • [23]Budzikiewicz H, Djerassi C, Williams DH: Structure Elucidation of Natural Products by Mass Spectrometry: Steroids, Terpenoids, Sugars, and Miscellaneous Classes, Volume 2. USA: Editorial Holden-Day, University of Michigan; 1964.
  • [24]Cheung HT, Williamson DG: NMR signals of methyl groups of triterpenes with oxygen functions at positions 2, 3 and 23. Tetrahedron 1969, 25:119-128.
  • [25]Luna-Herrera J, Costa MC, Gonzalez HG, Rodrigues AI, Castilho PC: Synergistic antimycobacterial activities of sesquiterpene lactones from Laurus spp. J Antimicrob Chemoth 2007, 59:548-552.
  • [26]Hernandez-Pando R, Orozco H, Sampieri A, Pavon L, Velasquillo C, Larriva-Sahd J, Alcocer JM, Madrid MV: Correlation between the kinetics of Th1 and Th2 cells and pathology in a murine model of experimental pulmonary tuberculosis. Immunology 1996, 89:26-33.
  • [27]Liu J: Oleanolic acid and ursolic acid: research perspectives. J Ethnopharmacol 2005, 100:92-94.
  • [28]Bamuamba K, Gammon DW, Meyers P, Dijoux-Franca MG, Scott G: Anti-mycobacterial activity of five plants species used as traditional medicine in the Western Cape province (South Africa). J Ethnopharmacol 2008, 117:385-390. doi:10.1016/j.jep.2008.02.007
  • [29]Gua JQ, Wang Y, Franzblau SG, Montenegro G, Timmermann BN: Constituents of Quinchamalium majus with potential antitubercular activity. Z Naturforsch C 2004, 59:797-802.
  • [30]Gu JQ, Wang Y, Franzblau SG, Montenegro G, Yang D, Timmermann BN: Antitubercular constituents of Valeriana laxiflora. Planta Med 2004, 70:509-514.
  • [31]Wächter GA, Valcic S, Flagg ML, Franzblau SG, Montenegro G, Suarez E, Timmermann BN: Antitubercular activity of pentacyclic triterpenoids from plants of Argentina and Chile. Phytomedicine 1999, 6:341-345.
  • [32]Cadwell CG, Franzblau SG, Suarez E, Timmermann BN: Oleanane triterpenes from Junellia tridens. J Nat Prod 2000, 63:1611-1614.
  • [33]Somova LO, Nadar A, Rammanan P, Shode FO: Cardiovascular, antihyperlipidemic and anti-oxidant effect of oleanolic and ursolic acids in experimental hypertension. Phytomedicine 2003, 10:115-121.
  • [34]Onwubalili JK, Scott GM, Robinson JA: Deficient immune interferon production in tuberculosis. Clin Exp Immunol 1985, 59:405-413.
  • [35]Rook GA, Hernandez-Pando R: The pathogenesis of tuberculosis. Annu Rev Microbiol 1996, 50:259-284.
  • [36]Cooper AM, Dalton DK, Stewart TA, Griffin JP, Russell DG, Orme IM: Disseminated tuberculosis in interferon gamma gene-disrupted mice. J Exp Med 1993, 178:2243-2247.
  • [37]Hernandez-Pando R, Orozco H, Arriaga K, Sampieri A, Larriva-Sahd J, Madrid-Marina V: Analysis of the local kinetics and localization of interleukin-1 alpha, tumour necrosis factor-α and transforming growth factor-β, during the course of experimental pulmonary tuberculosis. Immunology 1997, 90:607-617.
  • [38]Rangel-Moreno J, Estrada-Garcia I, García-Hernandez ML, Aguilar-Leon D, Marquez R, Hernandez-Pando R: The role of protaglandin E2 in the immunopathogenesis of experimental pulmonary tuberculosis. Immunology 2002, 106:257-266.
  • [39]Fabre RA, Perez TM, Aguilar LD, Rangel MJ, Estrada-Garcia I, Hernandez-Pando R, Estrada PS: Transfer factors as immunotherapy and supplement of chemotherapy in experimental pulmonary tuberculosis. Clin Exp Immunol 2004, 136:215-223.
  • [40]Hernandez-Pando R, Aguilar-Leon LD, Orozco H, Serrano A, Ahlem C, Trauger R, Schramm C, Reading C, Frincke J, Rook GA: 16alpha-Bromoepiandrosterone restores T helper cell type 1 activity and accelerates chemotherapy-induced bacterial clearance in a model of progressive pulmonary tuberculosis. J Infect Dis 2005, 191:299-306.
  • [41]Hernandez-Pando R, Orozco-Esteves H, Maldonado HA, Aguilar-Leon D, Vilchis-Landeros MM, Mata-Espinosa DA, Mendoza V, Lopez-Casillas F: A combination of a transforming growth factor-beta antagonist and an inhibitor of cyclooxygenase is an effective treatment for murine pulmonary tuberculosis. Clin Exp Immunol 2006, 144:264-272.
  • [42]Ikeda Y, Murakami A, Fujimora Y, Tachibana H, Yamada K, Masuda D, Hirano K, Yamashita S, Ohigashi H: Aggregated ursolic acid, a natural triterpenoid, induces IL-1beta release from murine peritoneal macrophages: role of CD36. J Immunol 2007, 178:4854-4864.
  • [43]Chiang LC, Ng LT, Chiang W, Chang MY, Lin CC: Immunomodulatory activities of flavonoids, monoterpenoids, triterpenoids, iridoid glycosides, and phenolic compounds of Plantago species. Planta Med 2003, 69:600-604.
  • [44]Jung TY, Pham TN, Umeyama A, Shoji N, Hashimoto T, Lee JJ, Takei M: Ursolic acid isolated from Unicaria rhynchophylla activates human dendritic cells via TLR2 and/or TLR4 and induces the production of IFN-gamma by CD4+ naïve T cells. Eur J Pharmacol 2012, 643:297-303. doi:10.1016/j.ejphar.2010.06.030
  • [45]Ellner JJ: Review: The immune response in human tuberculosis-implications for tuberculosis control. J Infect Dis 1997, 176:1351-1359.
  • [46]Toossi Z, Ellner JJ: The role of TGF beta in the pathogenesis of human tuberculosis. Clin Immunol Immunopathol 1998, 87:107-114.
  • [47]Hirsch CS, Hussain R, Toossi Z, Dawood G, Shahid F, Ellner JJ: Cross-modulation by transforming growth factor beta in human tuberculosis: Suppression of antigen-driven blastogenesis and interferon gamma production. Proc Natl Acad Sci USA 1996, 93:3193-3198.
  • [48]Hirsch CS, Ellner JJ, Blinkhorn R, Toosi Z: In vitro restoration of T cell responses in tuberculosis and augmentation of monocyte effector function against Mycobacterium tuberculosis by natural inhibitors of transforming growth factor β. Proc Natl Acad Sci USA 1997, 94:3926-3931.
  • [49]Letterio JJ, Roberts AB: Regulation of immune responses by TGF-beta. Ann Rev Immunol 1998, 16:137-161.
  • [50]van der Pouw Kraan TC, Boeije LC, Smeenk RJ, Wijdenes J, Aarden LA: Prostaglandin-E2 is a potent inhibitor of human interleukin 12 production. J Exp Med 1995, 181:775-779.
  • [51]Kuroda E, Sugiura T, Zeki K, Yoshida Y, Yamashita U: Sensitivity difference to the suppressive effect of prostaglandin E2 among mouse strains: a possible mechanism to polarize Th2 type response in BALB/c mice. J Immunol 2000, 164:2386-2395.
  • [52]Schultz RM, Pavlidis NA, Stylos WA, Chirigos MA: Regulation of macrophage tumoricidal function: a role of prostaglandins of the E series. Science 1978, 202:320-321.
  • [53]Renz H, Gong JH, Schmidt A, Nain M, Gemsa D: Release of tumor necrosis factor-alpha from macrophages. Enhancement and suppression are dose-dependently regulated by prostaglandin E2 and cyclic nucleotides. J Immunol 1988, 141:2388-2393.
  • [54]Subbaramaiah K, Michaluart P, Sporn MB, Dannenberg AJ: Ursolic acid inhibits cyclooxygenase-2 transcription in human mammary epithelial cells. Cancer Res 2000, 60:2399-2404.
  • [55]Dharmappa KK, Kumar RV, Nataraju A, Mohamed R, Shivaprasad HV, Vishwanath BS: Anti-inflammatory effect of oleanolic acid by inhibition of secretory phospholipase A2. Planta Med 2009, 75:211-215.
  • [56]Nataraju A, Raghavendra Gowda CD, Rajesh R, Vishwanath BS: Group IIA secretory PLA2 inhibition by ursolic acid; a potent anti-inflammatory molecule. Curr Top Med Chem 2007, 7:801-809.
  • [57]Ikeda Y, Murakami A, Ohigashi H: Strain differences regarding susceptibility to ursolic acid-induced interleukin-1beta release in murine macrophages. Life Sci 2008, 83:43-49.
  • [58]Ikeda Y, Murakami A, Ohigashi H: Ursolic acid: an anti and pro-inflammatory triterpenoids. Mol Nutr Food Res 2008, 52:26-42.
  • [59]Cornejo-Garrido J, Chamorro-Cevallos G, Garduño-Siciliano L, Hernández-Pando R, Jimenez-Arellanes MA: Acute and subacute toxicity (28 days) of a mixture of ursolic acid and oleanolic acid obtained from Bouvardia ternifolia in mice. Bol Latinoam Caribe Plantas Med Aromat 2012, 11:91-102.
  文献评价指标  
  下载次数:51次 浏览次数:26次