期刊论文详细信息
BMC Systems Biology
Hierarchy of non-glucose sugars in Escherichia coli
Uri Alon1  Anat Bren1  Erez Dekel1  Daphna Rothschild1  Benjamin D Towbin1  Guy Aidelberg1 
[1] Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
关键词: CAP;    CRP;    cAMP;    Cellular decision making;    Non-PTS sugars;    Diauxic shift;    CCR;    Carbon catabolic repression;    E. coli;   
Others  :  1091204
DOI  :  10.1186/s12918-014-0133-z
 received in 2014-06-08, accepted in 2014-12-04,  发布年份 2014
PDF
【 摘 要 】

Background

Understanding how cells make decisions, and why they make the decisions they make, is of fundamental interest in systems biology. To address this, we study the decisions made by E. coli on which genes to express when presented with two different sugars. It is well-known that glucose, E. coli’s preferred carbon source, represses the uptake of other sugars by means of global and gene-specific mechanisms. However, less is known about the utilization of glucose-free sugar mixtures which are found in the natural environment of E. coli and in biotechnology.

Results

Here, we combine experiment and theory to map the choices of E. coli among 6 different non-glucose carbon sources. We used robotic assays and fluorescence reporter strains to make precise measurements of promoter activity and growth rate in all pairs of these sugars. We find that the sugars can be ranked in a hierarchy: in a mixture of a higher and a lower sugar, the lower sugar system shows reduced promoter activity. The hierarchy corresponds to the growth rate supported by each sugar- the faster the growth rate, the higher the sugar on the hierarchy. The hierarchy is ‘soft’ in the sense that the lower sugar promoters are not completely repressed. Measurement of the activity of the master regulator CRP-cAMP shows that the hierarchy can be quantitatively explained based on differential activation of the promoters by CRP-cAMP. Comparing sugar system activation as a function of time in sugar pair mixtures at sub-saturating concentrations, we find cases of sequential activation, and also cases of simultaneous expression of both systems. Such simultaneous expression is not predicted by simple models of growth rate optimization, which predict only sequential activation. We extend these models by suggesting multi-objective optimization for both growing rapidly now and preparing the cell for future growth on the poorer sugar.

Conclusion

We find a defined hierarchy of sugar utilization, which can be quantitatively explained by differential activation by the master regulator cAMP-CRP. The present approach can be used to understand cell decisions when presented with mixtures of conditions.

【 授权许可】

   
2014 Aidelberg et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150128170253776.pdf 1389KB PDF download
Figure 7. 78KB Image download
Figure 6. 94KB Image download
20150306075138781.pdf 257KB PDF download
Figure 4. 98KB Image download
Figure 3. 25KB Image download
Figure 2. 24KB Image download
Figure 1. 25KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 6.

Figure 7.

【 参考文献 】
  • [1]Bollenbach T, Quan S, Chait R, Kishony R: Nonoptimal microbial response to antibiotics underlies suppressive drug interactions. Cell 2009, 139:707-718.
  • [2]Poelwijk FJ, Heyning PD, de Vos MGJ, Kiviet DJ, Tans SJ: Optimality and evolution of transcriptionally regulated gene expression. BMC Syst Biol 2011, 5:128. BioMed Central Full Text
  • [3]Dekel E, Alon U: Optimality and evolutionary tuning of the expression level of a protein. Nature 2005, 436:588-592.
  • [4]Monod J: Recherches Sur La Croissance Des Cultures Bacttriennes. Hermann and Cie, Paris; 1942.
  • [5]Gorke B, Stulke J: Carbon catabolite repression in bacteria: many ways to make the most out of nutrients. Nat Rev Microbiol 2008, 6:613-624.
  • [6]Magasanik B: Catabolite repression. Cold Spring Harb Symp Quant Biol 1961, 26:249-256.
  • [7]Brückner R, Titgemeyer F: Carbon catabolite repression in bacteria: choice of the carbon source and autoregulatory limitation of sugar utilization. FEMS Microbiol Lett 2002, 209:141-148.
  • [8]Stulke J, Hillen W: Carbon catabolite repression in bacteria. Curr Opin Microbiol 1999, 2:195-201.
  • [9]Shimizu K: Metabolic Regulation of a Bacterial Cell System with Emphasis on Escherichia coli Metabolism. ISRN Biochem 2013, 2013:1-47.
  • [10]Chubukov V, Gerosa L, Kochanowski K, Sauer U: Coordination of microbial metabolism. Nat Rev Microbiol 2014, 12:327-340.
  • [11]Dien BS, Nichols NN, Bothast RJ: Fermentation of sugar mixtures using Escherichia coli catabolite repression mutants engineered for production of L-lactic acid. J Ind Microbiol Biotechnol 2002, 29:221-227.
  • [12]Beisel CL, Storz G: The base-pairing RNA spot 42 participates in a multioutput feedforward loop to help enact catabolite repression in Escherichia coli. Mol Cell 2011, 41:286-297.
  • [13]Bobrovskyy M, Vanderpool CK: Regulation of bacterial metabolism by small RNAs using diverse mechanisms. Annu Rev Genet 2013, 47:209-232.
  • [14]Narang A: Quantitative effect and regulatory function of cyclic adenosine 5’-phosphate in Escherichia coli. J Biosci 2009, 34:445-463.
  • [15]Inada T, Kimata K, Aiba H: Mechanism responsible for glucose-lactose diauxie in Escherichia coli: challenge to the cAMP model. Genes to Cells 1996, 1:293-301.
  • [16]Hogema BM, Arents JC, Bader R, Eijkemans K, Yoshida H, Takahashi H, Aiba H, Postma PW: Inducer exclusion in Escherichia coli by non-PTS substrates: the role of the PEP to pyruvate ratio in determining the phosphorylation state of enzyme IIAGlc. Mol Microbiol 1998, 30:487-498.
  • [17]Bettenbrock K, Sauter T, Jahreis K, Kremling A, Lengeler JW, Gilles E-D: Correlation between growth rates, EIIACrr phosphorylation, and intracellular cyclic AMP levels in Escherichia coli K-12. J Bacteriol 2007, 189:6891-6900.
  • [18]You C, Okano H, Hui S, Zhang Z, Kim M, Gunderson CW, Wang Y-P, Lenz P, Yan D, Hwa T: Coordination of bacterial proteome with metabolism by cyclic AMP signalling. Nature 2013, 500:301-306.
  • [19]Doucette CD, Schwab DJ, Wingreen NS, Rabinowitz JD: α-Ketoglutarate coordinates carbon and nitrogen utilization via enzyme I inhibition. Nat Chem Biol 2011, 7:894-901.
  • [20]Fabich AJ, Jones SA, Chowdhury FZ, Cernosek A, Anderson A, Smalley D, McHargue JW, Hightower GA, Smith JT, Autieri SM, Leatham MP, Lins JJ, Allen RL, Laux DC, Cohen PS, Conway T: Comparison of carbon nutrition for pathogenic and commensal Escherichia coli strains in the mouse intestine. Infect Immun 2008, 76:1143-1152.
  • [21]Kovárová-Kovar K, Egli T: Growth kinetics of suspended microbial cells: from single-substrate-controlled growth to mixed-substrate kinetics. Microbiol Mol Biol Rev 1998, 62:646-66.
  • [22]Desai TA, Rao CV: Regulation of arabinose and xylose metabolism in Escherichia coli. Appl Environ Microbiol 2010, 76:1524-1532.
  • [23]Zaslaver A, Bren A, Ronen M, Itzkovitz S, Kikoin I, Shavit S, Liebermeister W, Surette MG, Alon U: A comprehensive library of fluorescent transcriptional reporters for Escherichia coli. Nat Methods 2006, 3:623-628.
  • [24]Keseler IM, Mackie A, Peralta-Gil M, Santos-Zavaleta A, Gama-Castro S, Bonavides-Martínez C, Fulcher C, Huerta AM, Kothari A, Krummenacker M, Latendresse M, Muñiz-Rascado L, Ong Q, Paley S, Schröder I, Shearer AG, Subhraveti P, Travers M, Weerasinghe D, Weiss V, Collado-Vides J, Gunsalus RP, Paulsen I, Karp PD: EcoCyc: fusing model organism databases with systems biology. Nucleic Acids Res 2013, 41(Database issue):D605-D612.
  • [25]Rothschild D, Dekel E, Hausser J, Bren A, Aidelberg G, Szekely P, Alon U: Linear superposition and prediction of bacterial promoter activity dynamics in complex conditions. PLoS Comput Biol 2014, 10:e1003602.
  • [26]Gerosa L, Kochanowski K, Heinemann M, Sauer U: Dissecting specific and global transcriptional regulation of bacterial gene expression. Mol Syst Biol 2013, 9:658.
  • [27]Berthoumieux S, de Jong H, Baptist G, Pinel C, Ranquet C, Ropers D, Geiselmann J: Shared control of gene expression in bacteria by transcription factors and global physiology of the cell. Mol Syst Biol 2013, 9:634.
  • [28]Keren L, Zackay O, Lotan-Pompan M, Barenholz U, Dekel E, Sasson V, Aidelberg G, Bren A, Zeevi D, Weinberger A, Alon U, Milo R, Segal E: Promoters maintain their relative activity levels under different growth conditions. Mol Syst Biol 2013, 9:701.
  • [29]Salgado H, Peralta-Gil M, Gama-Castro S, Santos-Zavaleta A, Muñiz-Rascado L, García-Sotelo JS, Weiss V, Solano-Lira H, Martínez-Flores I, Medina-Rivera A, Salgado-Osorio G, Alquicira-Hernández S, Alquicira-Hernández K, López-Fuentes A, Porrón-Sotelo L, Huerta AM, Bonavides-Martínez C, Balderas-Martínez YI, Pannier L, Olvera M, Labastida A, Jiménez-Jacinto V, Vega-Alvarado L, Del Moral-Chávez V, Hernández-Alvarez A, Morett E, Collado-Vides J: RegulonDB v8.0: omics data sets, evolutionary conservation, regulatory phrases, cross-validated gold standards and more. Nucleic Acids Res 2013, 41(Database issue):D203-D213.
  • [30]Kaplan S, Bren A, Zaslaver A, Dekel E, Alon U: Diverse two-dimensional input functions control bacterial sugar genes. Mol Cell 2008, 29:786-792.
  • [31]Hantke K, Winkler K, Schultz JE: Escherichia coli exports cyclic AMP via TolC. J Bacteriol 2011, 193:1086-1089.
  • [32]Soupene E, van Heeswijk WC, Plumbridge J, Stewart V, Bertenthal D, Lee H, Prasad G, Paliy O, Charernnoppakul P, Kustu S: Physiological Studies of Escherichia coli Strain MG1655: Growth Defects and Apparent Cross-Regulation of Gene Expression. J Bacteriol 2003, 185:5611-5626.
  • [33]Mitchell A, Romano GH, Groisman B, Yona A, Dekel E, Kupiec M, Dahan O, Pilpel Y: Adaptive prediction of environmental changes by microorganisms. Nature 2009, 460:220-224.
  • [34]Savageau MA: Demand Theory of Gene Regulation. II. Quantitative Application to the Lactose and Maltose Operons of Escherichia coli. Genetics 1998, 149:1677-1691.
  • [35]Dhurjati P, Ramkrishna D, Flickinger MC, Tsao GT: A cybernetic view of microbial growth: modeling of cells as optimal strategists. Biotechnol Bioeng 1985, 27:1-9.
  • [36]Kompala DS, Ramkrishna D, Jansen NB, Tsao GT: Investigation of bacterial growth on mixed substrates: experimental evaluation of cybernetic models. Biotechnol Bioeng 1986, 28:1044-1055.
  • [37]Kompala DS, Ramkrishna D, Tsao GT: Cybernetic modeling of microbial growth on multiple substrates. Biotechnol Bioeng 1984, 26:1272-81.
  • [38]Ramkrishna D, Kompala DS, Tsao GT: Are Microbes Optimal Strategists? Biotechnol Prog 1987, 3:121-126.
  • [39]Thattai M, Shraiman BI: Metabolic switching in the sugar phosphotransferase system of Escherichia coli. Biophys J 2003, 85:744-754.
  • [40]Narang A, Konopka A, Ramkrishna D: New patterns of mixed-substrate utilization during batch growth of Escherichia coli K12. Biotechnol Bioeng 1997, 55:747-57.
  • [41]Ramakrishna R, Ramkrishna D, Konopka AE: Cybernetic modeling of growth in mixed, substitutable substrate environments: Preferential and simultaneous utilization. Biotechnol Bioeng 1996, 52:141-51.
  • [42]Narang A: Comparative analysis of some models of gene regulation in mixed-substrate microbial growth. J Theor Biol 2006, 242:489-501.
  • [43]Koch AL: The protein burden of lac operon products. J Mol Evol 1983, 19:455-462.
  • [44]Koch AL: Why can’t a cell grow infinitely fast? Can J Microbiol 1988, 34:421-426.
  • [45]Nguyen TN, Phan QG, Duong LP, Bertrand KP, Lenski RE: Effects of carriage and expression of the Tn10 tetracycline-resistance operon on the fitness of Escherichia coli K12. Mol Biol Evol 1989, 6:213-225.
  • [46]Novick A, Weiner M: Enzyme Induction as an All-or-None Phenomenon. Proc Natl Acad Sci U S A 1957, 43:553-566.
  • [47]Shachrai I, Zaslaver A, Alon U, Dekel E: Cost of unneeded proteins in E. coli is reduced after several generations in exponential growth. Mol Cell 2010, 38:758-767.
  • [48]Eames M, Kortemme T: Cost-benefit tradeoffs in engineered lac operons. Science 2012, 336:911-915.
  • [49]Lendenmann U, Snozzi M, Egli T: Kinetics of the simultaneous utilization of sugar mixtures by Escherichia coli in continuous culture. Appl Env Microbiol 1996, 62:1493-1499.
  • [50]Shoval O, Sheftel H, Shinar G, Hart Y, Ramote O, Mayo a, Dekel E, Kavanagh K, Alon U: Evolutionary Trade-Offs, Pareto Optimality, and the Geometry of Phenotype Space. Science (80- ) 2012, 336:1157-1160.
  • [51]Sheftel H, Shoval O, Mayo A, Alon U: The geometry of the Pareto front in biological phenotype space. Ecol Evol 2013, 3:1471-1483.
  • [52]Szekely P, Sheftel H, Mayo A, Alon U: Evolutionary Tradeoffs between Economy and Effectiveness in Biological Homeostasis Systems. PLOS Comput Biol 2013, 9:e1003163.
  • [53]Schuetz R, Zamboni N, Zampieri M, Heinemann M, Sauer U: Multidimensional Optimality of Microbial Metabolism. Science (80- ) 2012, 336:601-604.
  • [54]Tagkopoulos I, Liu Y-C, Tavazoie S: Predictive behavior within microbial genetic networks. Science 2008, 320:1313-1317.
  • [55]Oxman E, Alon U, Dekel E: Defined order of evolutionary adaptations: experimental evidence. Evolution 2008, 62:1547-1554.
  • [56]Madar D, Dekel E, Bren A, Zimmer A, Porat Z, Alon U: Promoter activity dynamics in the lag phase of Escherichia coli. BMC Syst Biol 2013, 7:136. BioMed Central Full Text
  • [57]Lambert G, Kussel E: Memory and Fitness Optimization of Bacteria under Fluctuating Environments. PLoS Genet 2014, 10:e1004556.
  • [58]Shimada T, Kori A, Ishihama A: Involvement of the ribose operon repressor RbsR in regulation of purine nucleotide synthesis in Escherichia coli. FEMS Microbiol Lett 2013, 344:159-165.
  • [59]Leuze MR, Karpinets TV, Syed MH, Alex Beliaever S: Binding Motifs in Bacterial Gene Promoters Modulate Transcriptional Effects of Global Regulators CRP and ArcA. Gene Regul Syst Bio 2012, 2012:93-107.
  • [60]Shimada T, Fujita N, Yamamoto K, Ishihama A: Novel roles of cAMP receptor protein (CRP) in regulation of transport and metabolism of carbon sources. PLoS One 2011, 6:e20081.
  • [61]New AM, Cerulus B, Govers SK, Perez-Samper G, Zhu B, Boogmans S, Xavier JB, Verstrepen KJ: Different Levels of Catabolite Repression Optimize Growth in Stable and Variable Environments. PLoS Biol 2014, 12:e1001764.
  • [62]Xia T, Eiteman MA, Altman E: Simultaneous utilization of glucose, xylose and arabinose in the presence of acetate by a consortium of Escherichia coli strains. Microb Cell Fact 2012, 11:77. BioMed Central Full Text
  • [63]Ronen M, Rosenberg R, Shraiman BI, Alon U: Assigning numbers to the arrows: parameterizing a gene regulation network by using accurate expression kinetics. Proc Natl Acad Sci U S A 2002, 99:10555-10560.
  • [64]Zaslaver A, Mayo AE, Rosenberg R, Bashkin P, Sberro H, Tsalyuk M, Surette MG, Alon U: Just-in-time transcription program in metabolic pathways. Nat Genet 2004, 36:486-491.
  • [65]Setty Y, Mayo AE, Surette MG, Alon U: Detailed map of a cis-regulatory input function. Proc Natl Acad Sci U S A 2003, 100:7702-7707.
  文献评价指标  
  下载次数:45次 浏览次数:14次