期刊论文详细信息
BMC Geriatrics
Atherosclerosis and Alzheimer - diseases with a common cause? Inflammation, oxysterols, vasculature
Yuri Kotelevtsev3  Alexandra Sapronova2  Richard Lathe1 
[1] Pieta Research, PO Box 27069, Edinburgh EH10 5YW, UK;Optical Research Group, Laboratory of Evolutionary Biophysics of Development, Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia;Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, Little France, Edinburgh EH16 4TJ, UK
关键词: 25-hydroxycholesterol;    Cholesterol;    Inflammation;    Infection;    APOE;    Alzheimer;    Atherosclerosis;   
Others  :  855232
DOI  :  10.1186/1471-2318-14-36
 received in 2013-10-10, accepted in 2014-02-26,  发布年份 2014
PDF
【 摘 要 】

Background

Aging is accompanied by increasing vulnerability to pathologies such as atherosclerosis (ATH) and Alzheimer disease (AD). Are these different pathologies, or different presentations with a similar underlying pathoetiology?

Discussion

Both ATH and AD involve inflammation, macrophage infiltration, and occlusion of the vasculature. Allelic variants in common genes including APOE predispose to both diseases. In both there is strong evidence of disease association with viral and bacterial pathogens including herpes simplex and Chlamydophila. Furthermore, ablation of components of the immune system (or of bone marrow-derived macrophages alone) in animal models restricts disease development in both cases, arguing that both are accentuated by inflammatory/immune pathways. We discuss that amyloid β, a distinguishing feature of AD, also plays a key role in ATH. Several drugs, at least in mouse models, are effective in preventing the development of both ATH and AD. Given similar age-dependence, genetic underpinnings, involvement of the vasculature, association with infection, Aβ involvement, the central role of macrophages, and drug overlap, we conclude that the two conditions reflect different manifestations of a common pathoetiology.

Mechanism

Infection and inflammation selectively induce the expression of cholesterol 25-hydroxylase (CH25H). Acutely, the production of ‘immunosterol’ 25-hydroxycholesterol (25OHC) defends against enveloped viruses. We present evidence that chronic macrophage CH25H upregulation leads to catalyzed esterification of sterols via 25OHC-driven allosteric activation of ACAT (acyl-CoA cholesterol acyltransferase/SOAT), intracellular accumulation of cholesteryl esters and lipid droplets, vascular occlusion, and overt disease.

Summary

We postulate that AD and ATH are both caused by chronic immunologic challenge that induces CH25H expression and protection against particular infectious agents, but at the expense of longer-term pathology.

【 授权许可】

   
2014 Lathe et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140722031717543.pdf 3710KB PDF download
104KB Image download
90KB Image download
73KB Image download
121KB Image download
101KB Image download
97KB Image download
160KB Image download
51KB Image download
【 图 表 】

【 参考文献 】
  • [1]Izaks GJ, Westendorp RG: Ill or just old? Towards a conceptual framework of the relation between ageing and disease. BMC Geriatr 2003, 3:7. BioMed Central Full Text
  • [2]Roger VL, Go AS, Lloyd-Jones DM, Adams RJ, Berry JD, Brown TM, Carnethon MR, Dai S, de Simone G, Ford ES, Fox CS, Fullerton HJ, Gillespie C, Greenlund KJ, Hailpern SM, Heit JA, Ho PM, Howard VJ, Kissela BM, Kittner SJ, Lackland DT, Lichtman JH, Lisabeth LD, Makuc DM, Marcus GM, Marelli A, Matchar DB, McDermott MM, Meigs JB, Moy CS, et al.: Heart disease and stroke statistics–2011 update: a report from the American Heart Association. Circulation 2011, 123:e18-e209.
  • [3]Lim LS, Haq N, Mahmood S, Hoeksema L: Atherosclerotic cardiovascular disease screening in adults: American College Of Preventive Medicine position statement on preventive practice. Am J Prev Med 2011, 40:381-10.
  • [4]Mayeux R, Stern Y: Epidemiology of Alzheimer disease. Cold Spring Harb Perspect Med 2012, 2:a006239.
  • [5]Chan KY, Wang W, Wu JJ, Liu L, Theodoratou E, Car J, Middleton L, Russ TC, Deary IJ, Campbell H, Wang W, Rudan I: Epidemiology of Alzheimer’s disease and other forms of dementia in China, 1990–2010: a systematic review and analysis. Lancet 2013, 381:2016-2023.
  • [6]Lusis AJ: Atherosclerosis. Nature 2000, 407:233-241.
  • [7]Iadecola C: Neurovascular regulation in the normal brain and in Alzheimer’s disease. Nat Rev Neurosci 2004, 5:347-360.
  • [8]Robbins EM, Betensky RA, Domnitz SB, Purcell SM, Garcia-Alloza M, Greenberg C, Rebeck GW, Hyman BT, Greenberg SM, Frosch MP, Bacskai BJ: Kinetics of cerebral amyloid angiopathy progression in a transgenic mouse model of Alzheimer disease. J Neurosci 2006, 26:365-371.
  • [9]Armstrong RA: Classic beta-amyloid deposits cluster around large diameter blood vessels rather than capillaries in sporadic Alzheimer’s disease. Curr Neurovasc Res 2006, 3:289-294.
  • [10]Armstrong RA: A spatial pattern analysis of beta-amyloid (Abeta) deposition in the temporal lobe in Alzheimer’s disease. Folia Neuropathol 2010, 48:67-74.
  • [11]Vagnucci AH Jr, Li WW: Alzheimer’s disease and angiogenesis. Lancet 2003, 361:605-608.
  • [12]Jagust WJ, Budinger TF, Reed BR: The diagnosis of dementia with single photon emission computed tomography. Arch Neurol 1987, 44:258-262.
  • [13]Johnson KA, Mueller ST, Walshe TM, English RJ, Holman BL: Cerebral perfusion imaging in Alzheimer’s disease. Use of single photon emission computed tomography and iofetamine hydrochloride I 123. Arch Neurol 1987, 44:165-168.
  • [14]Niwa K, Kazama K, Younkin SG, Carlson GA, Iadecola C: Alterations in cerebral blood flow and glucose utilization in mice overexpressing the amyloid precursor protein. Neurobiol Dis 2002, 9:61-68.
  • [15]Roher AE, Esh C, Kokjohn TA, Kalback W, Luehrs DC, Seward JD, Sue LI, Beach TG: Circle of willis atherosclerosis is a risk factor for sporadic Alzheimer’s disease. Arterioscler Thromb Vasc Biol 2003, 23:2055-2062.
  • [16]Hofman A, Ott A, Breteler MM, Bots ML, Slooter AJ, van HF, van Duijn CN, Van BC, Grobbee DE: Atherosclerosis, apolipoprotein E, and prevalence of dementia and Alzheimer’s disease in the Rotterdam Study. Lancet 1997, 349:151-154.
  • [17]Stewart R: Cardiovascular factors in Alzheimer’s disease. J Neurol Neurosurg Psychiatry 1998, 65:143-147.
  • [18]Knopman DS: Cerebrovascular disease and dementia. Br J Radiol 2007, 80 Spec No 2:S121-S127.
  • [19]Wendell CR, Waldstein SR, Ferrucci L, O’Brien RJ, Strait JB, Zonderman AB: Carotid atherosclerosis and prospective risk of dementia. Stroke 2012, 43:3319-3324.
  • [20]Beach TG, Wilson JR, Sue LI, Newell A, Poston M, Cisneros R, Pandya Y, Esh C, Connor DJ, Sabbagh M, Walker DG, Roher AE: Circle of Willis atherosclerosis: association with Alzheimer’s disease, neuritic plaques and neurofibrillary tangles. Acta Neuropathol 2007, 113:13-21.
  • [21]Dolan H, Crain B, Troncoso J, Resnick SM, Zonderman AB, Obrien RJ: Atherosclerosis, dementia, and Alzheimer disease in the Baltimore Longitudinal Study of Aging cohort. Ann Neurol 2010, 68:231-240.
  • [22]Ellis RJ, Olichney JM, Thal LJ, Mirra SS, Morris JC, Beekly D, Heyman A: Cerebral amyloid angiopathy in the brains of patients with Alzheimer’s disease: the CERAD experience, Part XV. Neurology 1996, 46:1592-1596.
  • [23]Grau-Slevin M, Arboix A, Gaffney J, Slevin M: The role of small vessel disease in development of Alzheimer’s disease. Neural Reg Res 2010, 5:310-320.
  • [24]Kalaria RN, Ballard C: Overlap between pathology of Alzheimer disease and vascular dementia. Alzheimer Dis Assoc Disord 1999, 13(Suppl 3):S115-S123.
  • [25]Roher AE, Debbins JP, Malek-Ahmadi M, Chen K, Pipe JG, Maze S, Belden C, Maarouf CL, Thiyyagura P, Mo H, Hunter JM, Kokjohn TA, Walker DG, Kruchowsky JC, Belohlavek M, Sabbagh MN, Beach TG: Cerebral blood flow in Alzheimer’s disease. Vasc Health Risk Manag 2012, 8:599-611.
  • [26]Zambon D, Quintana M, Mata P, Alonso R, Benavent J, Cruz-Sanchez F, Gich J, Pocovi M, Civeira F, Capurro S, Bachman D, Sambamurti K, Nicholas J, Pappolla MA: Higher incidence of mild cognitive impairment in familial hypercholesterolemia. Am J Med 2010, 123:267-274.
  • [27]Bertram L, McQueen MB, Mullin K, Blacker D, Tanzi RE: Systematic meta-analyses of Alzheimer disease genetic association studies: the AlzGene database. Nat Genet 2007, 39:17-23.
  • [28]Liu H, Liu W, Liao Y, Cheng L, Liu Q, Ren X, Shi L, Tu X, Wang QK, Guo AY: CADgene: a comprehensive database for coronary artery disease genes. Nucleic Acids Res 2011, 39:D991-D996.
  • [29]Leeper NJ, Kullo IJ, Cooke JP: Genetics of peripheral artery disease. Circulation 2012, 125:3220-3228.
  • [30]Tanzi RE: The genetics of Alzheimer disease. Cold Spring Harb Perspect Med 2012, 2:a006296.
  • [31]Li H, Wetten S, Li L, St Jean PL, Upmanyu R, Surh L, Hosford D, Barnes MR, Briley JD, Borrie M, Coletta N, Delisle R, Dhalla D, Ehm MG, Feldman HH, Fornazzari L, Gauthier S, Goodgame N, Guzman D, Hammond S, Hollingworth P, Hsiung GY, Johnson J, Kelly DD, Keren R, Kertesz A, King KS, Lovestone S, Loy-English I, Matthews PM, et al.: Candidate single-nucleotide polymorphisms from a genomewide association study of Alzheimer disease. Arch Neurol 2008, 65:45-53.
  • [32]Jun G, Vardarajan BN, Buros J, Yu CE, Hawk MV, Dombroski BA, Crane PK, Larson EB, Mayeux R, Haines JL, Lunetta KL, Pericak-Vance MA, Schellenberg GD, Farrer LA: Comprehensive search for Alzheimer disease susceptibility loci in the APOE region. Arch Neurol 2012, 69:1270-1279.
  • [33]Deelen J, Beekman M, Uh HW, Helmer Q, Kuningas M, Christiansen L, Kremer D, van der Breggen R, Suchiman HE, Lakenberg N, van den Akker EB, Passtoors WM, Tiemeier H, van HD, de Craen AJ, Rivadeneira F, de Geus EJ, Perola M, van der Ouderaa FJ, Gunn DA, Boomsma DI, Uitterlinden AG, Christensen K, van Duijn CM, Heijmans BT, Houwing-Duistermaat JJ, Westendorp RG, Slagboom PE: Genome-wide association study identifies a single major locus contributing to survival into old age; the APOE locus revisited. Aging Cell 2011, 10:686-698.
  • [34]Middelberg RP, Ferreira MA, Henders AK, Heath AC, Madden PA, Montgomery GW, Martin NG, Whitfield JB: Genetic variants in LPL, OASL and TOMM40/APOE-C1-C2-C4 genes are associated with multiple cardiovascular-related traits. BMC Med Genet 2011, 12:123. BioMed Central Full Text
  • [35]Roses AD, Lutz MW, Amrine-Madsen H, Saunders AM, Crenshaw DG, Sundseth SS, Huentelman MJ, Welsh-Bohmer KA, Reiman EM: A TOMM40 variable-length polymorphism predicts the age of late-onset Alzheimer’s disease. Pharmacogenomics J 2010, 10:375-384.
  • [36]Cruchaga C, Nowotny P, Kauwe JS, Ridge PG, Mayo K, Bertelsen S, Hinrichs A, Fagan AM, Holtzman DM, Morris JC, Goate AM: Association and expression analyses with single-nucleotide polymorphisms in TOMM40 in Alzheimer disease. Arch Neurol 2011, 68:1013-1019.
  • [37]Maruszak A, Peplonska B, Safranow K, Chodakowska-Zebrowska M, Barcikowska M, Zekanowski C: TOMM40 rs10524523 polymorphism’s role in late-onset Alzheimer’s disease and in longevity. J Alzheimers Dis 2012, 28:309-322.
  • [38]Vogel P, Read RW, Rehg JE, Hansen GM: Cryptogenic organizing pneumonia in Tomm5−/− mice. Vet Pathol 2013, 50:65-75.
  • [39]Bekris LM, Lutz F, Yu CE: Functional analysis of APOE locus genetic variation implicates regional enhancers in the regulation of both TOMM40 and APOE. J Hum Genet 2012, 57:18-25.
  • [40]Ferencz B, Karlsson S, Kalpouzos G: Promising genetic biomarkers of preclinical Alzheimer’s disease: the influence of APOE and TOMM40 on brain integrity. Int J Alzheimers Dis 2012, 2012:421452.
  • [41]Oram JF, Yokoyama S: Apolipoprotein-mediated removal of cellular cholesterol and phospholipids. J Lipid Res 1996, 37:2473-2491.
  • [42]Grundy SM: Low-density lipoprotein, non-high-density lipoprotein, and apolipoprotein B as targets of lipid-lowering therapy. Circulation 2002, 106:2526-2529.
  • [43]Ohashi R, Mu H, Wang X, Yao Q, Chen C: Reverse cholesterol transport and cholesterol efflux in atherosclerosis. QJM 2005, 98:845-856.
  • [44]Rosenson RS, Brewer HB Jr, Davidson WS, Fayad ZA, Fuster V, Goldstein J, Hellerstein M, Jiang XC, Phillips MC, Rader DJ, Remaley AT, Rothblat GH, Tall AR, Yvan-Charvet L: Cholesterol efflux and atheroprotection: advancing the concept of reverse cholesterol transport. Circulation 2012, 125:1905-1919.
  • [45]Lund-Katz S, Phillips MC: High density lipoprotein structure-function and role in reverse cholesterol transport. Subcell Biochem 2010, 51:183-227.
  • [46]Mahley RW, Ji ZS: Remnant lipoprotein metabolism: key pathways involving cell-surface heparan sulfate proteoglycans and apolipoprotein E. J Lipid Res 1999, 40:1-16.
  • [47]Corbo RM, Scacchi R: Apolipoprotein E (APOE) allele distribution in the world. Is APOE*4 a ‘thrifty’ allele? Ann Hum Genet 1999, 63:301-310.
  • [48]Mahley RW, Rall SC Jr: Apolipoprotein E: far more than a lipid transport protein. Annu Rev Genomics Hum Genet 2000, 1:507-537.
  • [49]Seripa D, D’Onofrio G, Panza F, Cascavilla L, Masullo C, Pilotto A: The genetics of the human APOE polymorphism. Rejuvenation Res 2011, 14:491-500.
  • [50]Mahley RW, Weisgraber KH, Huang Y: Apolipoprotein E: structure determines function, from atherosclerosis to Alzheimer’s disease to AIDS. J Lipid Res 2009, 50(Suppl):S183-S188.
  • [51]Morrow JA, Hatters DM, Lu B, Hochtl P, Oberg KA, Rupp B, Weisgraber KH: Apolipoprotein E4 forms a molten globule. A potential basis for its association with disease. J Biol Chem 2002, 277:50380-50385.
  • [52]Weisgraber KH: Apolipoprotein E distribution among human plasma lipoproteins: role of the cysteine-arginine interchange at residue 112. J Lipid Res 1990, 31:1503-1511.
  • [53]Dong LM, Wilson C, Wardell MR, Simmons T, Mahley RW, Weisgraber KH, Agard DA: Human apolipoprotein E. Role of arginine 61 in mediating the lipoprotein preferences of the E3 and E4 isoforms. J Biol Chem 1994, 269:22358-22365.
  • [54]Dong LM, Weisgraber KH: Human apolipoprotein E4 domain interaction. Arginine 61 and glutamic acid 255 interact to direct the preference for very low density lipoproteins. J Biol Chem 1996, 271:19053-19057.
  • [55]Nguyen D, Dhanasekaran P, Nickel M, Nakatani R, Saito H, Phillips MC, Lund-Katz S: Molecular basis for the differences in lipid and lipoprotein binding properties of human apolipoproteins E3 and E4. Biochemistry 2010, 49:10881-10889.
  • [56]Heeren J, Grewal T, Laatsch A, Becker N, Rinninger F, Rye KA, Beisiegel U: Impaired recycling of apolipoprotein E4 is associated with intracellular cholesterol accumulation. J Biol Chem 2004, 279:55483-55492.
  • [57]Gong JS, Morita SY, Kobayashi M, Handa T, Fujita SC, Yanagisawa K, Michikawa M: Novel action of apolipoprotein E (ApoE): ApoE isoform specifically inhibits lipid-particle-mediated cholesterol release from neurons. Mol Neurodegener 2007, 2:9. BioMed Central Full Text
  • [58]Minagawa H, Gong JS, Jung CG, Watanabe A, Lund-Katz S, Phillips MC, Saito H, Michikawa M: Mechanism underlying apolipoprotein E (ApoE) isoform-dependent lipid efflux from neural cells in culture. J Neurosci Res 2009, 87:2498-2508.
  • [59]Tam SP, Mok L, Chimini G, Vasa M, Deeley RG: ABCA1 mediates high-affinity uptake of 25-hydroxycholesterol by membrane vesicles and rapid efflux of oxysterol by intact cells. Am J Physiol Cell Physiol 2006, 291:C490-C502.
  • [60]Okoro EU, Zhao Y, Guo Z, Zhou L, Lin X, Yang H: Apolipoprotein E4 is deficient in inducing macrophage ABCA1 expression and stimulating the Sp1 signaling pathway. PLoS One 2012, 7:e44430.
  • [61]Harris FM, Brecht WJ, Xu Q, Tesseur I, Kekonius L, Wyss-Coray T, Fish JD, Masliah E, Hopkins PC, Scearce-Levie K, Weisgraber KH, Mucke L, Mahley RW, Huang Y: Carboxyl-terminal-truncated apolipoprotein E4 causes Alzheimer’s disease-like neurodegeneration and behavioral deficits in transgenic mice. Proc Natl Acad Sci U S A 2003, 100:10966-10971.
  • [62]Brecht WJ, Harris FM, Chang S, Tesseur I, Yu GQ, Xu Q, Dee FJ, Wyss-Coray T, Buttini M, Mucke L, Mahley RW, Huang Y: Neuron-specific apolipoprotein e4 proteolysis is associated with increased tau phosphorylation in brains of transgenic mice. J Neurosci 2004, 24:2527-2534.
  • [63]Chang S, ran MT, Miranda RD, Balestra ME, Mahley RW, Huang Y: Lipid- and receptor-binding regions of apolipoprotein E4 fragments act in concert to cause mitochondrial dysfunction and neurotoxicity. Proc Natl Acad Sci U S A 2005, 102:18694-18699.
  • [64]Mahley RW: Apolipoprotein E: cholesterol transport protein with expanding role in cell biology. Science 1988, 240:622-630.
  • [65]Mahley RW, Huang Y: Apolipoprotein E: from atherosclerosis to Alzheimer’s disease and beyond. Curr Opin Lipidol 1999, 10:207-217.
  • [66]Breslow JL: Mouse models of atherosclerosis. Science 1996, 272:685-688.
  • [67]Ishibashi S, Goldstein JL, Brown MS, Herz J, Burns DK: Massive xanthomatosis and atherosclerosis in cholesterol-fed low density lipoprotein receptor-negative mice. J Clin Invest 1994, 93:1885-1893.
  • [68]Powell-Braxton L, Veniant M, Latvala RD, Hirano KI, Won WB, Ross J, Dybdal N, Zlot CH, Young SG, Davidson NO: A mouse model of human familial hypercholesterolemia: markedly elevated low density lipoprotein cholesterol levels and severe atherosclerosis on a low-fat chow diet. Nat Med 1998, 4:934-938.
  • [69]Citron M, Oltersdorf T, Haass C, McConlogue L, Hung AY, Seubert P, Vigo-Pelfrey C, Lieberburg I, Selkoe DJ: Mutation of the beta-amyloid precursor protein in familial Alzheimer’s disease increases beta-protein production. Nature 1992, 360:672-674.
  • [70]Sturchler-Pierrat C, Abramowski D, Duke M, Wiederhold KH, Mistl C, Rothacher S, Ledermann B, Burki K, Frey P, Paganetti PA, Waridel C, Calhoun ME, Jucker M, Probst A, Staufenbiel M, Sommer B: Two amyloid precursor protein transgenic mouse models with Alzheimer disease-like pathology. Proc Natl Acad Sci U S A 1997, 94:13287-13292.
  • [71]Reaume AG, Howland DS, Trusko SP, Savage MJ, Lang DM, Greenberg BD, Siman R, Scott RW: Enhanced amyloidogenic processing of the beta-amyloid precursor protein in gene-targeted mice bearing the Swedish familial Alzheimer’s disease mutations and a “humanized” Abeta sequence. J Biol Chem 1996, 271:23380-23388.
  • [72]Irizarry MC, McNamara M, Fedorchak K, Hsiao K, Hyman BT: APPSw transgenic mice develop age-related A beta deposits and neuropil abnormalities, but no neuronal loss in CA1. J Neuropathol Exp Neurol 1997, 56:965-973.
  • [73]Tokuda T, Calero M, Matsubara E, Vidal R, Kumar A, Permanne B, Zlokovic B, Smith JD, Ladu MJ, Rostagno A, Frangione B, Ghiso J: Lipidation of apolipoprotein E influences its isoform-specific interaction with Alzheimer’s amyloid beta peptides. Biochem J 2000, 348(Pt 2):359-365.
  • [74]Ji ZS, Miranda RD, Newhouse YM, Weisgraber KH, Huang Y, Mahley RW: Apolipoprotein E4 potentiates amyloid beta peptide-induced lysosomal leakage and apoptosis in neuronal cells. J Biol Chem 2002, 277:21821-21828.
  • [75]Ye S, Huang Y, Mullendorff K, Dong L, Giedt G, Meng EC, Cohen FE, Kuntz ID, Weisgraber KH, Mahley RW: Apolipoprotein (apo) E4 enhances amyloid beta peptide production in cultured neuronal cells: apoE structure as a potential therapeutic target. Proc Natl Acad Sci U S A 2005, 102:18700-18705.
  • [76]de Meyer GR, de Cleen DM, Cooper S, Knaapen MW, Jans DM, Martinet W, Herman AG, Bult H, Kockx MM: Platelet phagocytosis and processing of beta-amyloid precursor protein as a mechanism of macrophage activation in atherosclerosis. Circ Res 2002, 90:1197-1204.
  • [77]Zaghi J, Goldenson B, Inayathullah M, Lossinsky AS, Masoumi A, Avagyan H, Mahanian M, Bernas M, Weinand M, Rosenthal MJ, Espinosa-Jeffrey A, de VJ, Teplow DB, Fiala M: Alzheimer disease macrophages shuttle amyloid-beta from neurons to vessels, contributing to amyloid angiopathy. Acta Neuropathol 2009, 117:111-124.
  • [78]de Jager M, van der Wildt B, Schul E, Bol JG, van Duinen SG, Drukarch B, Wilhelmus MM: Tissue transglutaminase colocalizes with extracellular matrix proteins in cerebral amyloid angiopathy. Neurobiol Aging 2013, 34:1159-1169.
  • [79]Lee PH, Bang OY, Hwang EM, Lee JS, Joo US, Mook-Jung I, Huh K: Circulating beta amyloid protein is elevated in patients with acute ischemic stroke. J Neural Transm 2005, 112:1371-1379.
  • [80]Thomas T, Thomas G, McLendon C, Sutton T, Mullan M: beta-Amyloid-mediated vasoactivity and vascular endothelial damage. Nature 1996, 380:168-171.
  • [81]Townsend KP, Obregon D, Quadros A, Patel N, Volmar C, Paris D, Mullan M: Proinflammatory and vasoactive effects of Abeta in the cerebrovasculature. Ann N Y Acad Sci 2002, 977:65-76.
  • [82]Kokjohn TA, van Vickle GD, Maarouf CL, Kalback WM, Hunter JM, Daugs ID, Luehrs DC, Lopez J, Brune D, Sue LI, Beach TG, Castano EM, Roher AE: Chemical characterization of pro-inflammatory amyloid-beta peptides in human atherosclerotic lesions and platelets. Biochim Biophys Acta 1812, 2011:1508-1514.
  • [83]Li L, Cao D, Garber DW, Kim H, Fukuchi K: Association of aortic atherosclerosis with cerebral beta-amyloidosis and learning deficits in a mouse model of Alzheimer’s disease. Am J Pathol 2003, 163:2155-2164.
  • [84]Tibolla G, Norata GD, Meda C, Arnaboldi L, Uboldi P, Piazza F, Ferrarese C, Corsini A, Maggi A, Vegeto E, Catapano AL: Increased atherosclerosis and vascular inflammation in APP transgenic mice with apolipoprotein E deficiency. Atherosclerosis 2010, 210:78-87.
  • [85]van de Parre TJ, Guns PJ, Fransen P, Martinet W, Bult H, Herman AG, De Meyer GR: Attenuated atherogenesis in apolipoprotein E-deficient mice lacking amyloid precursor protein. Atherosclerosis 2011, 216:54-58.
  • [86]Bales KR, Verina T, Cummins DJ, Du Y, Dodel RC, Saura J, Fishman CE, DeLong CA, Piccardo P, Petegnief V, Ghetti B, Paul SM: Apolipoprotein E is essential for amyloid deposition in the APP(V717F) transgenic mouse model of Alzheimer’s disease. Proc Natl Acad Sci U S A 1999, 96:15233-15238.
  • [87]Fryer JD, Taylor JW, Demattos RB, Bales KR, Paul SM, Parsadanian M, Holtzman DM: Apolipoprotein E markedly facilitates age-dependent cerebral amyloid angiopathy and spontaneous hemorrhage in amyloid precursor protein transgenic mice. J Neurosci 2003, 23:7889-7896.
  • [88]Nilsson LN, Arendash GW, Leighty RE, Costa DA, Low MA, Garcia MF, Cracciolo JR, Rojiani A, Wu X, Bales KR, Paul SM, Potter H: Cognitive impairment in PDAPP mice depends on ApoE and ACT-catalyzed amyloid formation. Neurobiol Aging 2004, 25:1153-1167.
  • [89]Schaefer EJ, Gregg RE, Ghiselli G, Forte TM, Ordovas JM, Zech LA, Brewer HB Jr: Familial apolipoprotein E deficiency. J Clin Invest 1986, 78:1206-1219.
  • [90]van Eck M, Bos IS, Kaminski WE, Orso E, Rothe G, Twisk J, Bottcher A, Van Amersfoort ES, Christiansen-Weber TA, Fung-Leung WP, Van Berkel TJ, Schmitz G: Leukocyte ABCA1 controls susceptibility to atherosclerosis and macrophage recruitment into tissues. Proc Natl Acad Sci U S A 2002, 99:6298-6303.
  • [91]Lammers B, Zhao Y, Hoekstra M, Hildebrand RB, Ye D, Meurs I, Van Berkel TJ, Van EM: Augmented atherogenesis in LDL receptor deficient mice lacking both macrophage ABCA1 and ApoE. PLoS One 2011, 6:e26095.
  • [92]Koldamova R, Staufenbiel M, Lefterov I: Lack of ABCA1 considerably decreases brain ApoE level and increases amyloid deposition in APP23 mice. J Biol Chem 2005, 280:43224-43235.
  • [93]Yagyu H, Kitamine T, Osuga J, Tozawa R, Chen Z, Kaji Y, Oka T, Perrey S, Tamura Y, Ohashi K, Okazaki H, Yahagi N, Shionoiri F, Iizuka Y, Harada K, Shimano H, Yamashita H, Gotoda T, Yamada N, Ishibashi S: Absence of ACAT-1 attenuates atherosclerosis but causes dry eye and cutaneous xanthomatosis in mice with congenital hyperlipidemia. J Biol Chem 2000, 275:21324-21330.
  • [94]Accad M, Smith SJ, Newland DL, Sanan DA, King LE Jr, Linton MF, Fazio S, Farese RV Jr: Massive xanthomatosis and altered composition of atherosclerotic lesions in hyperlipidemic mice lacking acyl CoA:cholesterol acyltransferase 1. J Clin Invest 2000, 105:711-719.
  • [95]Fazio S, Major AS, Swift LL, Gleaves LA, Accad M, Linton MF, Farese RV Jr: Increased atherosclerosis in LDL receptor-null mice lacking ACAT1 in macrophages. J Clin Invest 2001, 107:163-171.
  • [96]Su YR, Dove DE, Major AS, Hasty AH, Boone B, Linton MF, Fazio S: Reduced ABCA1-mediated cholesterol efflux and accelerated atherosclerosis in apolipoprotein E-deficient mice lacking macrophage-derived ACAT1. Circulation 2005, 111:2373-2381.
  • [97]Bryleva EY, Rogers MA, Chang CC, Buen F, Harris BT, Rousselet E, Seidah NG, Oddo S, LaFerla FM, Spencer TA, Hickey WF, Chang TY: ACAT1 gene ablation increases 24(S)-hydroxycholesterol content in the brain and ameliorates amyloid pathology in mice with AD. Proc Natl Acad Sci U S A 2010, 107:3081-3086.
  • [98]Willner EL, Tow B, Buhman KK, Wilson M, Sanan DA, Rudel LL, Farese RV Jr: Deficiency of acyl CoA:cholesterol acyltransferase 2 prevents atherosclerosis in apolipoprotein E-deficient mice. Proc Natl Acad Sci U S A 2003, 100:1262-1267.
  • [99]Bell TA III, Kelley K, Wilson MD, Sawyer JK, Rudel LL: Dietary fat-induced alterations in atherosclerosis are abolished by ACAT2-deficiency in ApoB100 only, LDLr−/− mice. Arterioscler Thromb Vasc Biol 2007, 27:1396-1402.
  • [100]Hamada N, Miyata M, Eto H, Ikeda Y, Shirasawa T, Akasaki Y, Miyauchi T, Furusho Y, Nagaki A, Aronow BJ, Tei C: Loss of clusterin limits atherosclerosis in apolipoprotein E-deficient mice via reduced expression of Egr-1 and TNF-alpha. J Atheroscler Thromb 2011, 18:209-216.
  • [101]Demattos RB, O’Dell MA, Parsadanian M, Taylor JW, Harmony JA, Bales KR, Paul SM, Aronow BJ, Holtzman DM: Clusterin promotes amyloid plaque formation and is critical for neuritic toxicity in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci U S A 2002, 99:10843-10848.
  • [102]Demattos RB, Cirrito JR, Parsadanian M, May PC, O’Dell MA, Taylor JW, Harmony JA, Aronow BJ, Bales KR, Paul SM, Holtzman DM: ApoE and clusterin cooperatively suppress Abeta levels and deposition: evidence that ApoE regulates extracellular Abeta metabolism in vivo. Neuron 2004, 41:193-202.
  • [103]Umetani M, Mangelsdorf DJ, Shaul PW: 27-Hydroxycholesterol, the first identified endogenous SERM, promotes atherogenesis in mice. Circulation 2010, 122:A18427.
  • [104]Yau JL, Rasmuson S, Andrew R, Graham M, Noble J, Olsson T, Fuchs E, Lathe R, Seckl JR: Dehydroepiandrosterone 7-hydroxylase CYP7B: predominant expression in primate hippocampus and reduced expression in Alzheimer’s disease. Neuroscience 2003, 121:307-314.
  • [105]Gupta S, Pablo AM, Jiang X, Wang N, Tall AR, Schindler C: IFN-gamma potentiates atherosclerosis in ApoE knock-out mice. J Clin Invest 1997, 99:2752-2761.
  • [106]Yamamoto M, Kiyota T, Horiba M, Buescher JL, Walsh SM, Gendelman HE, Ikezu T: Interferon-gamma and tumor necrosis factor-alpha regulate amyloid-beta plaque deposition and beta-secretase expression in Swedish mutant APP transgenic mice. Am J Pathol 2007, 170:680-692.
  • [107]Fryer JD, Demattos RB, McCormick LM, O’Dell MA, Spinner ML, Bales KR, Paul SM, Sullivan PM, Parsadanian M, Bu G, Holtzman DM: The low density lipoprotein receptor regulates the level of central nervous system human and murine apolipoprotein E but does not modify amyloid plaque pathology in PDAPP mice. J Biol Chem 2005, 280:25754-25759.
  • [108]Cao D, Fukuchi K, Wan H, Kim H, Li L: Lack of LDL receptor aggravates learning deficits and amyloid deposits in Alzheimer transgenic mice. Neurobiol Aging 2006, 27:1632-1643.
  • [109]Katsouri L, Georgopoulos S: Lack of LDL receptor enhances amyloid deposition and decreases glial response in an Alzheimer’s disease mouse model. PLoS One 2011, 6:e21880.
  • [110]Meiner VL, Cases S, Myers HM, Sande ER, Bellosta S, Schambelan M, Pitas RE, McGuire J, Herz J, Farese RV Jr: Disruption of the acyl-CoA:cholesterol acyltransferase gene in mice: evidence suggesting multiple cholesterol esterification enzymes in mammals. Proc Natl Acad Sci U S A 1996, 93:14041-14046.
  • [111]Chang TY, Li BL, Chang CC, Urano Y: Acyl-coenzyme A: cholesterol acyltransferases. Am J Physiol Endocrinol Metab 2009, 297:E1-E9.
  • [112]Black S, Kushner I, Samols D: C-reactive Protein. J Biol Chem 2004, 279:48487-48490.
  • [113]Paffen E, DeMaat MP: C-reactive protein in atherosclerosis: A causal factor? Cardiovasc Res 2006, 71:30-39.
  • [114]Reynolds GD, Vance RP: C-reactive protein immunohistochemical localization in normal and atherosclerotic human aortas. Arch Pathol Lab Med 1987, 111:265-269.
  • [115]Yasojima K, Schwab C, McGeer EG, McGeer PL: Human neurons generate C-reactive protein and amyloid P: upregulation in Alzheimer’s disease. Brain Res 2000, 887:80-89.
  • [116]McGeer PL, McGeer EG: Inflammation of the brain in Alzheimer’s disease: implications for therapy. J Leukoc Biol 1999, 65:409-415.
  • [117]Akiyama H, Barger S, Barnum S, Bradt B, Bauer J, Cole GM, Cooper NR, Eikelenboom P, Emmerling M, Fiebich BL, Finch CE, Frautschy S, Griffin WS, Hampel H, Hull M, Landreth G, Lue L, Mrak R, Mackenzie IR, McGeer PL, O'Banion MK, Pachter J, Pasinetti G, Plata-Salaman C, Rogers J, Rydel R, Shen Y, Streit W, Strohmeyer R, Tooyoma I, et al.: Inflammation and Alzheimer’s disease. Neurobiol Aging 2000, 21:383-421.
  • [118]Hansson GK, Robertson AK, Soderberg-Naucler C: Inflammation and atherosclerosis. Annu Rev Pathol 2006, 1:297-329.
  • [119]Libby P: Inflammation in atherosclerosis. Arterioscler Thromb Vasc Biol 2012, 32:2045-2051.
  • [120]Qiao JH, Tripathi J, Mishra NK, Cai Y, Tripathi S, Wang XP, Imes S, Fishbein MC, Clinton SK, Libby P, Lusis AJ, Rajavashisth TB: Role of macrophage colony-stimulating factor in atherosclerosis: studies of osteopetrotic mice. Am J Pathol 1997, 150:1687-1699.
  • [121]Song L, Leung C, Schindler C: Lymphocytes are important in early atherosclerosis. J Clin Invest 2001, 108:251-259.
  • [122]Uchida HA, Kristo F, Rateri DL, Lu H, Charnigo R, Cassis LA, Daugherty A: Total lymphocyte deficiency attenuates AngII-induced atherosclerosis in males but not abdominal aortic aneurysms in apoE deficient mice. Atherosclerosis 2010, 211:399-403.
  • [123]Ait-Oufella H, Herbin O, Bouaziz JD, Binder CJ, Uyttenhove C, Laurans L, Taleb S, Van VE, Esposito B, Vilar J, Sirvent J, Van SJ, Tedgui A, Tedder TF, Mallat Z: B cell depletion reduces the development of atherosclerosis in mice. J Exp Med 2010, 207:1579-1587.
  • [124]el Khoury J, Toft M, Hickman SE, Means TK, Terada K, Geula C, Luster AD: Ccr2 deficiency impairs microglial accumulation and accelerates progression of Alzheimer-like disease. Nat Med 2007, 13:432-438.
  • [125]Medeiros R, Prediger RD, Passos GF, Pandolfo P, Duarte FS, Franco JL, Dafre AL, Di GG, Figueiredo CP, Takahashi RN, Campos MM, Calixto JB: Connecting TNF-alpha signaling pathways to iNOS expression in a mouse model of Alzheimer’s disease: relevance for the behavioral and synaptic deficits induced by amyloid beta protein. J Neurosci 2007, 27:5394-5404.
  • [126]Reed-Geaghan EG, Reed QW, Cramer PE, Landreth GE: Deletion of CD14 attenuates Alzheimer’s disease pathology by influencing the brain’s inflammatory milieu. J Neurosci 2010, 30:15369-15373.
  • [127]Cimino PJ, Yang Y, Li X, Hemingway JF, Cherne MK, Khademi SB, Fukui Y, Montine KS, Montine TJ, Keene CD: Ablation of the microglial protein DOCK2 reduces amyloid burden in a mouse model of Alzheimer’s disease. Exp Mol Pathol 2013, 94:366-371.
  • [128]van Eck M, Herijgers N, Yates J, Pearce NJ, Hoogerbrugge PM, Groot PH, Van Berkel TJ: Bone marrow transplantation in apolipoprotein E-deficient mice. Effect of ApoE gene dosage on serum lipid concentrations, (beta)VLDL catabolism, and atherosclerosis. Arterioscler Thromb Vasc Biol 1997, 17:3117-3126.
  • [129]Herijgers N, Van EM, Groot PH, Hoogerbrugge PM, van Berkel TJ: Low density lipoprotein receptor of macrophages facilitates atherosclerotic lesion formation in C57Bl/6 mice. Arterioscler Thromb Vasc Biol 2000, 20:1961-1967.
  • [130]Fazio S, Babaev VR, Burleigh ME, Major AS, Hasty AH, Linton MF: Physiological expression of macrophage apoE in the artery wall reduces atherosclerosis in severely hyperlipidemic mice. J Lipid Res 2002, 43:1602-1609.
  • [131]Zhao Y, Pennings M, Hildebrand RB, Ye D, Calpe-Berdiel L, Out R, Kjerrulf M, Hurt-Camejo E, Groen AK, Hoekstra M, Jessup W, Chimini G, Van Berkel TJ, Van EM: Enhanced foam cell formation, atherosclerotic lesion development, and inflammation by combined deletion of ABCA1 and SR-BI in Bone marrow-derived cells in LDL receptor knockout mice on western-type diet. Circ Res 2010, 107:e20-e31.
  • [132]Keene CD, Chang RC, Lopez-Yglesias AH, Shalloway BR, Sokal I, Li X, Reed PJ, Keene LM, Montine KS, Breyer RM, Rockhill JK, Montine TJ: Suppressed accumulation of cerebral amyloid beta peptides in aged transgenic Alzheimer’s disease mice by transplantation with wild-type or prostaglandin E2 receptor subtype 2-null bone marrow. Am J Pathol 2010, 177:346-354.
  • [133]Hao W, Liu Y, Liu S, Walter S, Grimm MO, Kiliaan AJ, Penke B, Hartmann T, Rube CE, Menger MD, Fassbender K: Myeloid differentiation factor 88-deficient bone marrow cells improve Alzheimer’s disease-related symptoms and pathology. Brain 2011, 134:278-292.
  • [134]Zhu Y, Obregon D, Hou H, Giunta B, Ehrhart J, Fernandez F, Mori T, Nikolic W, Zhao Y, Morgan D, Town T, Tan J: Mutant presenilin-1 deregulated peripheral immunity exacerbates Alzheimer-like pathology. J Cell Mol Med 2011, 15:327-338.
  • [135]Yang Y, Cudaback E, Jorstad NL, Hemingway JF, Hagan CE, Melief EJ, Li X, Yoo T, Khademi SB, Montine KS, Montine TJ, Keene CD: APOE3, but not APOE4, bone marrow transplantation mitigates behavioral and pathological changes in a mouse model of Alzheimer disease. Am J Pathol 2013, 183:905-917.
  • [136]Moore KJ, Tabas I: Macrophages in the pathogenesis of atherosclerosis. Cell 2011, 145:341-355.
  • [137]Fiala M, Liu QN, Sayre J, Pop V, Brahmandam V, Graves MC, Vinters HV: Cyclooxygenase-2-positive macrophages infiltrate the Alzheimer’s disease brain and damage the blood–brain barrier. Eur J Clin Invest 2002, 32:360-371.
  • [138]Tennert C, Teupser D, Mueller MA, Wilfert W, Renner-Muller I, Stein O, Stein Y, Sippel AE, Wolf E, Thiery J: Effect of macrophage ApoE on atherosclerosis in LDL-receptor deficient mice. Biochem Biophys Res Commun 2007, 361:574-579.
  • [139]Gaudreault N, Kumar N, Olivas VR, Eberle D, Rapp JH, Raffai RL: Macrophage-specific apoE gene repair reduces diet-induced hyperlipidemia and atherosclerosis in hypomorphic Apoe mice. PLoS One 2012, 7:e35816.
  • [140]Babaev VR, Yancey PG, Ryzhov SV, Kon V, Breyer MD, Magnuson MA, Fazio S, Linton MF: Conditional knockout of macrophage PPARgamma increases atherosclerosis in C57BL/6 and low-density lipoprotein receptor-deficient mice. Arterioscler Thromb Vasc Biol 2005, 25:1647-1653.
  • [141]Overton CD, Yancey PG, Major AS, Linton MF, Fazio S: Deletion of macrophage LDL receptor-related protein increases atherogenesis in the mouse. Circ Res 2007, 100:670-677.
  • [142]Wegiel J, Wang KC, Imaki H, Rubenstein R, Wronska A, Osuchowski M, Lipinski WJ, Walker LC, LeVine H: The role of microglial cells and astrocytes in fibrillar plaque evolution in transgenic APP(SW) mice. Neurobiol Aging 2001, 22:49-61.
  • [143]Wegiel J, Imaki H, Wang KC, Wegiel J, Rubenstein R: Cells of monocyte/microglial lineage are involved in both microvessel amyloidosis and fibrillar plaque formation in APPsw tg mice. Brain Res 2004, 1022:19-29.
  • [144]Simard AR, Soulet D, Gowing G, Julien JP, Rivest S: Bone marrow-derived microglia play a critical role in restricting senile plaque formation in Alzheimer’s disease. Neuron 2006, 49:489-502.
  • [145]Grathwohl SA, Kalin RE, Bolmont T, Prokop S, Winkelmann G, Kaeser SA, Odenthal J, Radde R, Eldh T, Gandy S, Aguzzi A, Staufenbiel M, Mathews PM, Wolburg H, Heppner FL, Jucker M: Formation and maintenance of Alzheimer’s disease beta-amyloid plaques in the absence of microglia. Nat Neurosci 2009, 12:1361-1363.
  • [146]Hawkes CA, McLaurin J: Selective targeting of perivascular macrophages for clearance of beta-amyloid in cerebral amyloid angiopathy. Proc Natl Acad Sci U S A 2009, 106:1261-1266.
  • [147]Town T, Laouar Y, Pittenger C, Mori T, Szekely CA, Tan J, Duman RS, Flavell RA: Blocking TGF-beta-Smad2/3 innate immune signaling mitigates Alzheimer-like pathology. Nat Med 2008, 14:681-687.
  • [148]Gate D, Rezai-Zadeh K, Jodry D, Rentsendorj A, Town T: Macrophages in Alzheimer’s disease: the blood-borne identity. J Neural Transm 2010, 117:961-970.
  • [149]Rezai-Zadeh K, Gate D, Gowing G, Town T: How to get from here to there: macrophage recruitment in Alzheimer’s disease. Curr Alzheimer Res 2011, 8:156-163.
  • [150]Marshall BJ: One hundred years of discovery and rediscovery of Helicobacter pylori and its association with peptic ulcer disease. In Helicobacter pylori: Physiology and Genetics. Edited by Mobley HLT, Mendz GL, Hazell SL. Washington DC: ADM Press; 2001. Chapter 3
  • [151]Marshall BJ, Warren JR: Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. Lancet 1984, 1:1311-1315.
  • [152]Liu L, Drouet V, Wu JW, Witter MP, Small SA, Clelland C, Duff K: Trans-synaptic spread of tau pathology in vivo. PLoS One 2012, 7:e31302.
  • [153]de Calignon A, Polydoro M, Suarez-Calvet M, William C, Adamowicz DH, Kopeikina KJ, Pitstick R, Sahara N, Ashe KH, Carlson GA, Spires-Jones TL, Hyman BT: Propagation of tau pathology in a model of early Alzheimer’s disease. Neuron 2012, 73:685-697.
  • [154]Baker HF, Ridley RM, Duchen LW, Crow TJ, Bruton CJ: Induction of beta (A4)-amyloid in primates by injection of Alzheimer’s disease brain homogenate. Comparison with transmission of spongiform encephalopathy. Mol Neurobiol 1994, 8:25-39.
  • [155]Ridley RM, Baker HF, Windle CP, Cummings RM: Very long term studies of the seeding of beta-amyloidosis in primates. J Neural Transm 2006, 113:1243-1251.
  • [156]Jucker M, Walker LC: Pathogenic protein seeding in Alzheimer disease and other neurodegenerative disorders. Ann Neurol 2011, 70:532-540.
  • [157]Kane MD, Lipinski WJ, Callahan MJ, Bian F, Durham RA, Schwarz RD, Roher AE, Walker LC: Evidence for seeding of beta -amyloid by intracerebral infusion of Alzheimer brain extracts in beta -amyloid precursor protein-transgenic mice. J Neurosci 2000, 20:3606-3611.
  • [158]Meyer-Luehmann M, Coomaraswamy J, Bolmont T, Kaeser S, Schaefer C, Kilger E, Neuenschwander A, Abramowski D, Frey P, Jaton AL, Vigouret JM, Paganetti P, Walsh DM, Mathews PM, Ghiso J, Staufenbiel M, Walker LC, Jucker M: Exogenous induction of cerebral beta-amyloidogenesis is governed by agent and host. Science 2006, 313:1781-1784.
  • [159]Eisele YS, Bolmont T, Heikenwalder M, Langer F, Jacobson LH, Yan ZX, Roth K, Aguzzi A, Staufenbiel M, Walker LC, Jucker M: Induction of cerebral beta-amyloidosis: intracerebral versus systemic Abeta inoculation. Proc Natl Acad Sci U S A 2009, 106:12926-12931.
  • [160]Eisele YS, Obermuller U, Heilbronner G, Baumann F, Kaeser SA, Wolburg H, Walker LC, Staufenbiel M, Heikenwalder M, Jucker M: Peripherally applied Abeta-containing inoculates induce cerebral beta-amyloidosis. Science 2010, 330:980-982.
  • [161]Langer F, Eisele YS, Fritschi SK, Staufenbiel M, Walker LC, Jucker M: Soluble Abeta seeds are potent inducers of cerebral beta-amyloid deposition. J Neurosci 2011, 31:14488-14495.
  • [162]Morales R, Duran-Aniotz C, Castilla J, Estrada LD, Soto C: De novo induction of amyloid-beta deposition in vivo. Mol Psychiatry 2012, 17:1347-1353.
  • [163]Rosen RF, Fritz JJ, Dooyema J, Cintron AF, Hamaguchi T, Lah JJ, LeVine H III, Jucker M, Walker LC: Exogenous seeding of cerebral beta-amyloid deposition in betaAPP-transgenic rats. J Neurochem 2012, 120:660-666.
  • [164]Bolmont T, Clavaguera F, Meyer-Luehmann M, Herzig MC, Radde R, Staufenbiel M, Lewis J, Hutton M, Tolnay M, Jucker M: Induction of tau pathology by intracerebral infusion of amyloid-beta -containing brain extract and by amyloid-beta deposition in APP x Tau transgenic mice. Am J Pathol 2007, 171:2012-2020.
  • [165]Walker LC, LeVine H III, Mattson MP, Jucker M: Inducible proteopathies. Trends Neurosci 2006, 29:438-443.
  • [166]Hardy J, Selkoe DJ: The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 2002, 297:353-356.
  • [167]Fischer O: Miliare Nekrosen mit drusigen Wucherungen der Neurofibrillen, eine regelmässige Veränderung der Hirnrinde bei seniler Demenz. Monatschr f Psychiat Neurol 1907, 22:372.
  • [168]Miklossy J: Emerging roles of pathogens in Alzheimer disease. Expert Rev Mol Med 2011, 13:e30.
  • [169]Shima K, Kuhlenbaumer G, Rupp J: Chlamydia pneumoniae infection and Alzheimer’s disease: a connection to remember? Med Microbiol Immunol 2010, 199:283-289.
  • [170]De CG, Marcocci ME, Sgarbanti R, Civitelli L, Ripoli C, Piacentini R, Garaci E, Grassi C, Palamara AT: Infectious agents and neurodegeneration. Mol Neurobiol 2012, 46:614-638.
  • [171]Honjo K, van RR, Verhoeff NP: Alzheimer’s disease and infection: do infectious agents contribute to progression of Alzheimer’s disease? Alzheimers Dement 2009, 5:348-360.
  • [172]Mann DMA, Tates PP, Davides JS, Hawkes J: Viruses, Parkinsonism and Alzheimer’s Disease. J Neurol Neurosurg Psychiat 1981, 44:651.
  • [173]Esiri MM: Viruses and Alzheimer’s disease. J Neurol Neurosurg Psychiatry 1982, 45:759-760.
  • [174]Mori I, Kimura Y, Naiki H, Matsubara R, Takeuchi T, Yokochi T, Nishiyama Y: Reactivation of HSV-1 in the brain of patients with familial Alzheimer’s disease. J Med Virol 2004, 73:605-611.
  • [175]Walker DG, O’Kusky JR, McGeer PL: In situ hybridization analysis for herpes simplex virus nucleic acids in Alzheimer disease. Alzheimer Dis Assoc Disord 1989, 3:123-131.
  • [176]Letenneur L, Peres K, Fleury H, Garrigue I, Barberger-Gateau P, Helmer C, Orgogozo JM, Gauthier S, Dartigues JF: Seropositivity to herpes simplex virus antibodies and risk of Alzheimer’s disease: a population-based cohort study. PLoS One 2008, 3:e3637.
  • [177]Balin BJ, Gerard HC, Arking EJ, Appelt DM, Branigan PJ, Abrams JT, Whittum-Hudson JA, Hudson AP: Identification and localization of Chlamydia pneumoniae in the Alzheimer’s brain. Med Microbiol Immunol 1998, 187:23-42.
  • [178]Gerard HC, Dreses-Werringloer U, Wildt KS, Deka S, Oszust C, Balin BJ, Frey WH, Bordayo EZ, Whittum-Hudson JA, Hudson AP: Chlamydophila (Chlamydia) pneumoniae in the Alzheimer’s brain. FEMS Immunol Med Microbiol 2006, 48:355-366.
  • [179]Hammond CJ, Hallock LR, Howanski RJ, Appelt DM, Little CS, Balin BJ: Immunohistological detection of Chlamydia pneumoniae in the Alzheimer’s disease brain. BMC Neurosci 2010, 11:121. BioMed Central Full Text
  • [180]Riviere GR, Riviere KH, Smith KS: Molecular and immunological evidence of oral Treponema in the human brain and their association with Alzheimer’s disease. Oral Microbiol Immunol 2002, 17:113-118.
  • [181]Miklossy J: Alzheimer’s disease–a spirochetosis? Neuroreport 1993, 4:841-848.
  • [182]Kountouras J, Tsolaki M, Gavalas E, Boziki M, Zavos C, Karatzoglou P, Chatzopoulos D, Venizelos I: Relationship between Helicobacter pylori infection and Alzheimer disease. Neurology 2006, 66:938-940.
  • [183]Roubaud-Baudron C, Krolak-Salmon P, Quadrio I, Megraud F, Salles N: Impact of chronic Helicobacter pylori infection on Alzheimer’s disease: preliminary results. Neurobiol Aging 2012, 33:1009.
  • [184]Roubaud-Baudron C, Letenneur L, Langlais A, Buissonniere A, Megraud F, Dartigues JF, Salles N: Does Helicobacter pylori infection increase incidence of dementia? The Personnes Agées QUID Study. J Am Geriatr Soc 2013, 61:74-78.
  • [185]Shiota S, Murakami K, Yoshiiwa A, Yamamoto K, Ohno S, Kuroda A, Mizukami K, Hanada K, Okimoto T, Kodama M, Abe K, Yamaoka Y, Fujioka T: The relationship between Helicobacter pylori infection and Alzheimer’s disease in Japan. J Neurol 2011, 258:1460-1463.
  • [186]Kountouras J, Boziki M, Gavalas E, Zavos C, Deretzi G, Chatzigeorgiou S, Katsinelos P, Grigoriadis N, Giartza-Taxidou E, Venizelos I: Five-year survival after Helicobacter pylori eradication in Alzheimer disease patients. Cogn Behav Neurol 2010, 23:199-204.
  • [187]Benditt EP, Barrett T, McDougall JK: Viruses in the etiology of atherosclerosis. Proc Natl Acad Sci U S A 1983, 80:6386-6389.
  • [188]Hendrix MG, Dormans PH, Kitslaar P, Bosman F, Bruggeman CA: The presence of cytomegalovirus nucleic acids in arterial walls of atherosclerotic and nonatherosclerotic patients. Am J Pathol 1989, 134:1151-1157.
  • [189]Melnick JL, Petrie BL, Dreesman GR, Burek J, McCollum CH, DeBakey ME: Cytomegalovirus antigen within human arterial smooth muscle cells. Lancet 1983, 2:644-647.
  • [190]Petrie BL, Melnick JL, Adam E, Burek J, McCollum CH, DeBakey ME: Nucleic acid sequences of cytomegalovirus in cells cultured from human arterial tissue. J Infect Dis 1987, 155:158-159.
  • [191]Speir E, Modali R, Huang ES, Leon MB, Shawl F, Finkel T, Epstein SE: Potential role of human cytomegalovirus and p53 interaction in coronary restenosis. Science 1994, 265:391-394.
  • [192]Zhou YF, Leon MB, Waclawiw MA, Popma JJ, Yu ZX, Finkel T, Epstein SE: Association between prior cytomegalovirus infection and the risk of restenosis after coronary atherectomy. N Engl J Med 1996, 335:624-630.
  • [193]Grahame-Clarke C, Chan NN, Andrew D, Ridgway GL, Betteridge DJ, Emery V, Colhoun HM, Vallance P: Human cytomegalovirus seropositivity is associated with impaired vascular function. Circulation 2003, 108:678-683.
  • [194]Nieto FJ, Adam E, Sorlie P, Farzadegan H, Melnick JL, Comstock GW, Szklo M: Cohort study of cytomegalovirus infection as a risk factor for carotid intimal-medial thickening, a measure of subclinical atherosclerosis. Circulation 1996, 94:922-927.
  • [195]Shor A, Kuo CC, Patton DL: Detection of Chlamydia pneumoniae in coronary arterial fatty streaks and atheromatous plaques. S Afr Med J 1992, 82:158-161.
  • [196]Kuo CC, Gown AM, Benditt EP, Grayston JT: Detection of Chlamydia pneumoniae in aortic lesions of atherosclerosis by immunocytochemical stain. Arterioscler Thromb 1993, 13:1501-1504.
  • [197]Gibbs RG, Carey N, Davies AH: Chlamydia pneumoniae and vascular disease. Br J Surg 1998, 85:1191-1197.
  • [198]Kaplan M, Yavuz SS, Cinar B, Koksal V, Kut MS, Yapici F, Gercekoglu H, Demirtas MM: Detection of Chlamydia pneumoniae and Helicobacter pylori in atherosclerotic plaques of carotid artery by polymerase chain reaction. Int J Infect Dis 2006, 10:116-123.
  • [199]Deniset JF, Cheung PK, Dibrov E, Lee K, Steigerwald S, Pierce GN: Chlamydophila pneumoniae infection leads to smooth muscle cell proliferation and thickening in the coronary artery without contributions from a host immune response. Am J Pathol 2010, 176:1028-1037.
  • [200]Kalayoglu MV, Libby P, Byrne GI: Chlamydia pneumoniae as an emerging risk factor in cardiovascular disease. JAMA 2002, 288:2724-2731.
  • [201]Watson C, Alp NJ: Role of Chlamydia pneumoniae in atherosclerosis. Clin Sci (Lond) 2008, 114:509-531.
  • [202]Ameriso SF, Fridman EA, Leiguarda RC, Sevlever GE: Detection of Helicobacter pylori in human carotid atherosclerotic plaques. Stroke 2001, 32:385-391.
  • [203]Blasi F, Denti F, Erba M, Cosentini R, Raccanelli R, Rinaldi A, Fagetti L, Esposito G, Ruberti U, Allegra L: Detection of Chlamydia pneumoniae but not Helicobacter pylori in atherosclerotic plaques of aortic aneurysms. J Clin Microbiol 1996, 34:2766-2769.
  • [204]Okuda K, Ishihara K, Nakagawa T, Hirayama A, Inayama Y, Okuda K: Detection of Treponema denticola in atherosclerotic lesions. J Clin Microbiol 2001, 39:1114-1117.
  • [205]Southerland JH, Taylor GW, Moss K, Beck JD, Offenbacher S: Commonality in chronic inflammatory diseases: periodontitis, diabetes, and coronary artery disease. Periodontol 2000 2006, 40:130-143.
  • [206]Mattila KJ, Nieminen MS, Valtonen VV, Rasi VP, Kesaniemi YA, Syrjala SL, Jungell PS, Isoluoma M, Hietaniemi K, Jokinen MJ: Association between dental health and acute myocardial infarction. BMJ 1989, 298:779-781.
  • [207]Loesche WJ, Schork A, Terpenning MS, Chen YM, Kerr C, Dominguez BL: The relationship between dental disease and cerebral vascular accident in elderly United States veterans. Ann Periodontol 1998, 3:161-174.
  • [208]Kurihara N, Inoue Y, Iwai T, Umeda M, Huang Y, Ishikawa I: Detection and localization of periodontopathic bacteria in abdominal aortic aneurysms. Eur J Vasc Endovasc Surg 2004, 28:553-558.
  • [209]Zaremba M, Gorska R, Suwalski P, Kowalski J: Evaluation of the incidence of periodontitis-associated bacteria in the atherosclerotic plaque of coronary blood vessels. J Periodontol 2007, 78:322-327.
  • [210]Wada K, Kamisaki Y: Roles of oral bacteria in cardiovascular diseases–from molecular mechanisms to clinical cases: Involvement of Porphyromonas gingivalis in the development of human aortic aneurysm. J Pharmacol Sci 2010, 113:115-119.
  • [211]Chatzidimitriou D, Kirmizis D, Gavriilaki E, Chatzidimitriou M, Malisiovas N: Atherosclerosis and infection: is the jury still not in? Future Microbiol 2012, 7:1217-1230.
  • [212]Desvarieux M, Demmer RT, Jacobs DR Jr, Rundek T, Boden-Albala B, Sacco RL, Papapanou PN: Periodontal bacteria and hypertension: the oral infections and vascular disease epidemiology study (INVEST). J Hypertens 2010, 28:1413-1421.
  • [213]Mawhorter SD, Lauer MA: Is atherosclerosis an infectious disease? Cleve Clin J Med 2001, 68:449-458.
  • [214]Andraws R, Berger JS, Brown DL: Effects of antibiotic therapy on outcomes of patients with coronary artery disease: a meta-analysis of randomized controlled trials. JAMA 2005, 293:2641-2647.
  • [215]Minick CR, Fabricant CG, Fabricant J, Litrenta MM: Atheroarteriosclerosis induced by infection with a herpesvirus. Am J Pathol 1979, 96:673-706.
  • [216]Hajjar DP: Warner-Lambert/Parke-Davis Award Lecture. Viral pathogenesis of atherosclerosis. Impact of molecular mimicry and viral genes. Am J Pathol 1991, 139:1195-1211.
  • [217]Little CS, Hammond CJ, MacIntyre A, Balin BJ, Appelt DM: Chlamydia pneumoniae induces Alzheimer-like amyloid plaques in brains of BALB/c mice. Neurobiol Aging 2004, 25:419-429.
  • [218]Wozniak MA, Itzhaki RF, Shipley SJ, Dobson CB: Herpes simplex virus infection causes cellular beta-amyloid accumulation and secretase upregulation. Neurosci Lett 2007, 429:95-100.
  • [219]Sy M, Kitazawa M, Medeiros R, Whitman L, Cheng D, Lane TE, LaFerla FM: Inflammation induced by infection potentiates tau pathological features in transgenic mice. Am J Pathol 2011, 178:2811-2822.
  • [220]Green DA, Masliah E, Vinters HV, Beizai P, Moore DJ, Achim CL: Brain deposition of beta-amyloid is a common pathologic feature in HIV positive patients. AIDS 2005, 19:407-411.
  • [221]Jung BK, Pyo KH, Shin KY, Hwang YS, Lim H, Lee SJ, Moon JH, Lee SH, Suh YH, Chai JY, Shin EH: Toxoplasma gondii infection in the brain inhibits neuronal degeneration and learning and memory impairments in a murine model of Alzheimer’s disease. PLoS One 2012, 7:e33312.
  • [222]Moazed TC, Kuo C, Grayston JT, Campbell LA: Murine models of Chlamydia pneumoniae infection and atherosclerosis. J Infect Dis 1997, 175:883-890.
  • [223]Liu L, Hu H, Ji H, Murdin AD, Pierce GN, Zhong G: Chlamydia pneumoniae infection significantly exacerbates aortic atherosclerosis in an LDLR−/− mouse model within six months. Mol Cell Biochem 2000, 215:123-128.
  • [224]Hauer AD, de VP, Peterse N, ten CH, van Berkel TJ, Stassen FR, Kuiper J: Delivery of Chlamydia pneumoniae to the vessel wall aggravates atherosclerosis in LDLr−/− mice. Cardiovasc Res 2006, 69:280-288.
  • [225]Aalto-Setala K, Laitinen K, Erkkila L, Leinonen M, Jauhiainen M, Ehnholm C, Tamminen M, Puolakkainen M, Penttila I, Saikku P: Chlamydia pneumoniae does not increase atherosclerosis in the aortic root of apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 2001, 21:578-584.
  • [226]Caligiuri G, Rottenberg M, Nicoletti A, Wigzell H, Hansson GK: Chlamydia pneumoniae infection does not induce or modify atherosclerosis in mice. Circulation 2001, 103:2834-2838.
  • [227]Cao F, Castrillo A, Tontonoz P, Re F, Byrne GI: Chlamydia pneumoniae–induced macrophage foam cell formation is mediated by Toll-like receptor 2. Infect Immun 2007, 75:753-759.
  • [228]Coombes BK, Mahony JB: Chlamydia pneumoniae infection of human endothelial cells induces proliferation of smooth muscle cells via an endothelial cell-derived soluble factor(s). Infect Immun 1999, 67:2909-2915.
  • [229]Miyamoto T, Yumoto H, Takahashi Y, Davey M, Gibson FC III, Genco CA: Pathogen-accelerated atherosclerosis occurs early after exposure and can be prevented via immunization. Infect Immun 2006, 74:1376-1380.
  • [230]Hayashi C, Papadopoulos G, Gudino CV, Weinberg EO, Barth KR, Madrigal AG, Chen Y, Ning H, LaValley M, Gibson FC III, Hamilton JA, Genco CA: Protective role for TLR4 signaling in atherosclerosis progression as revealed by infection with a common oral pathogen. J Immunol 2012, 189:3681-3688.
  • [231]Ayada K, Yokota K, Hirai K, Fujimoto K, Kobayashi K, Ogawa H, Hatanaka K, Hirohata S, Yoshino T, Shoenfeld Y, Matsuura E, Oguma K: Regulation of cellular immunity prevents Helicobacter pylori-induced atherosclerosis. Lupus 2009, 18:1154-1168.
  • [232]Kesavalu L, Lucas AR, Verma RK, Liu L, Dai E, Sampson E, Progulske-Fox A: Increased atherogenesis during Streptococcus mutans infection in ApoE-null mice. J Dent Res 2012, 91:255-260.
  • [233]Alber DG, Powell KL, Vallance P, Goodwin DA, Grahame-Clarke C: Herpesvirus infection accelerates atherosclerosis in the apolipoprotein E-deficient mouse. Circulation 2000, 102:779-785.
  • [234]Naghavi M, Wyde P, Litovsky S, Madjid M, Akhtar A, Naguib S, Siadaty MS, Sanati S, Casscells W: Influenza infection exerts prominent inflammatory and thrombotic effects on the atherosclerotic plaques of apolipoprotein E-deficient mice. Circulation 2003, 107:762-768.
  • [235]Hsich E, Zhou YF, Paigen B, Johnson TM, Burnett MS, Epstein SE: Cytomegalovirus infection increases development of atherosclerosis in Apolipoprotein-E knockout mice. Atherosclerosis 2001, 156:23-28.
  • [236]Vliegen I, Duijvestijn A, Grauls G, Herngreen S, Bruggeman C, Stassen F: Cytomegalovirus infection aggravates atherogenesis in apoE knockout mice by both local and systemic immune activation. Microbes Infect 2004, 6:17-24.
  • [237]Doenhoff MJ, Stanley RG, Griffiths K, Jackson CL: An anti-atherogenic effect of Schistosoma mansoni infections in mice associated with a parasite-induced lowering of blood total cholesterol. Parasitology 2002, 125:415-421.
  • [238]Wright SD, Burton C, Hernandez M, Hassing H, Montenegro J, Mundt S, Patel S, Card DJ, Hermanowski-Vosatka A, Bergstrom JD, Sparrow CP, Detmers PA, Chao YS: Infectious agents are not necessary for murine atherogenesis. J Exp Med 2000, 191:1437-1442.
  • [239]Ostos MA, Recalde D, Zakin MM, Scott-Algara D: Implication of natural killer T cells in atherosclerosis development during a LPS-induced chronic inflammation. FEBS Lett 2002, 519:23-29.
  • [240]Vliegen I, Herngreen SB, Grauls GE, Bruggeman CA, Stassen FR: Mouse cytomegalovirus antigenic immune stimulation is sufficient to aggravate atherosclerosis in hypercholesterolemic mice. Atherosclerosis 2005, 181:39-44.
  • [241]Krstic D, Madhusudan A, Doehner J, Vogel P, Notter T, Imhof C, Manalastas A, Hilfiker M, Pfister S, Schwerdel C, Riether C, Meyer U, Knuesel I: Systemic immune challenges trigger and drive Alzheimer-like neuropathology in mice. J Neuroinflammation 2012, 9:151. BioMed Central Full Text
  • [242]Lee JW, Lee YK, Yuk DY, Choi DY, Ban SB, Oh KW, Hong JT: Neuro-inflammation induced by lipopolysaccharide causes cognitive impairment through enhancement of beta-amyloid generation. J Neuroinflammation 2008, 5:37. BioMed Central Full Text
  • [243]Epstein SE, Zhu J, Najafi AH, Burnett MS: Insights into the role of infection in atherogenesis and in plaque rupture. Circulation 2009, 119:3133-3141.
  • [244]McGuinness B, Passmore P: Can statins prevent or help treat Alzheimer’s disease? J Alzheimers Dis 2010, 20:925-933.
  • [245]Ballantyne CM, Raichlen JS, Nicholls SJ, Erbel R, Tardif JC, Brener SJ, Cain VA, Nissen SE: Effect of rosuvastatin therapy on coronary artery stenoses assessed by quantitative coronary angiography: a study to evaluate the effect of rosuvastatin on intravascular ultrasound-derived coronary atheroma burden. Circulation 2008, 117:2458-2466.
  • [246]Nissen SE, Nicholls SJ, Sipahi I, Libby P, Raichlen JS, Ballantyne CM, Davignon J, Erbel R, Fruchart JC, Tardif JC, Schoenhagen P, Crowe T, Cain V, Wolski K, Goormastic M, Tuzcu EM: Effect of very high-intensity statin therapy on regression of coronary atherosclerosis: the ASTEROID trial. JAMA 2006, 295:1556-1565.
  • [247]Sipahi I, Nicholls SJ, Tuzcu EM, Nissen SE: Coronary atherosclerosis can regress with very intensive statin therapy. Cleve Clin J Med 2006, 73:937-944.
  • [248]Lim GP, Chu T, Yang F, Beech W, Frautschy SA, Cole GM: The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse. J Neurosci 2001, 21:8370-8377.
  • [249]Yang F, Lim GP, Begum AN, Ubeda OJ, Simmons MR, Ambegaokar SS, Chen PP, Kayed R, Glabe CG, Frautschy SA, Cole GM: Curcumin inhibits formation of amyloid beta oligomers and fibrils, binds plaques, and reduces amyloid in vivo. J Biol Chem 2005, 280:5892-5901.
  • [250]Garcia-Alloza M, Borrelli LA, Rozkalne A, Hyman BT, Bacskai BJ: Curcumin labels amyloid pathology in vivo, disrupts existing plaques, and partially restores distorted neurites in an Alzheimer mouse model. J Neurochem 2007, 102:1095-1104.
  • [251]Begum AN, Jones MR, Lim GP, Morihara T, Kim P, Heath DD, Rock CL, Pruitt MA, Yang F, Hudspeth B, Hu S, Faull KF, Teter B, Cole GM, Frautschy SA: Curcumin structure-function, bioavailability, and efficacy in models of neuroinflammation and Alzheimer’s disease. J Pharmacol Exp Ther 2008, 326:196-208.
  • [252]Ahmed T, Gilani AH, Hosseinmardi N, Semnanian S, Enam SA, Fathollahi Y: Curcuminoids rescue long-term potentiation impaired by amyloid peptide in rat hippocampal slices. Synapse 2011, 65:572-582.
  • [253]Baum L, Lam CW, Cheung SK, Kwok T, Lui V, Tsoh J, Lam L, Leung V, Hui E, Ng C, Woo J, Chiu HF, Goggins WB, Zee BC, Cheng KF, Fong CY, Wong A, Mok H, Chow MS, Ho PC, Ip SP, Ho CS, Yu XW, Lai CY, Chan MH, Szeto S, Chan IH, Mok V: Six-month randomized, placebo-controlled, double-blind, pilot clinical trial of curcumin in patients with Alzheimer disease. J Clin Psychopharmacol 2008, 28:110-113.
  • [254]Olszanecki R, Jawien J, Gajda M, Mateuszuk L, Gebska A, Korabiowska M, Chlopicki S, Korbut R: Effect of curcumin on atherosclerosis in apoE/LDLR-double knockout mice. J Physiol Pharmacol 2005, 56:627-635.
  • [255]Shin SK, Ha TY, McGregor RA, Choi MS: Long-term curcumin administration protects against atherosclerosis via hepatic regulation of lipoprotein cholesterol metabolism. Mol Nutr Food Res 2011, 55:1829-1840.
  • [256]Coban D, Milenkovic D, Chanet A, Khallou-Laschet J, Sabbe L, Palagani A, Vanden Berghe W, Mazur A, Morand C: Dietary curcumin inhibits atherosclerosis by affecting the expression of genes involved in leukocyte adhesion and transendothelial migration. Mol Nutr Food Res 2012, 56:1270-1281.
  • [257]Bauman DR, Bitmansour AD, McDonald JG, Thompson BM, Liang G, Russell DW: 25-Hydroxycholesterol secreted by macrophages in response to Toll-like receptor activation suppresses immunoglobulin A production. Proc Natl Acad Sci U S A 2009, 106:16764-16769.
  • [258]Marambaud P, Zhao H, Davies P: Resveratrol promotes clearance of Alzheimer’s disease amyloid-beta peptides. J Biol Chem 2005, 280:37377-37382.
  • [259]Granzotto A, Zatta P: Resveratrol acts not through anti-aggregative pathways but mainly via its scavenging properties against Abeta and Abeta-metal complexes toxicity. PLoS One 2011, 6:e21565.
  • [260]Capiralla H, Vingtdeux V, Zhao H, Sankowski R, Al-Abed Y, Davies P, Marambaud P: Resveratrol mitigates lipopolysaccharide- and Abeta-mediated microglial inflammation by inhibiting the TLR4/NF-kappaB/STAT signaling cascade. J Neurochem 2012, 120:461-472.
  • [261]Huang TC, Lu KT, Wo YY, Wu YJ, Yang YL: Resveratrol protects rats from Abeta-induced neurotoxicity by the reduction of iNOS expression and lipid peroxidation. PLoS One 2011, 6:e29102.
  • [262]Karuppagounder SS, Pinto JT, Xu H, Chen HL, Beal MF, Gibson GE: Dietary supplementation with resveratrol reduces plaque pathology in a transgenic model of Alzheimer’s disease. Neurochem Int 2009, 54:111-118.
  • [263]Wang J, Ho L, Zhao Z, Seror I, Humala N, Dickstein DL, Thiyagarajan M, Percival SS, Talcott ST, Pasinetti GM: Moderate consumption of Cabernet Sauvignon attenuates Abeta neuropathology in a mouse model of Alzheimer’s disease. FASEB J 2006, 20:2313-2320.
  • [264]Patel KR, Scott E, Brown VA, Gescher AJ, Steward WP, Brown K: Clinical trials of resveratrol. Ann N Y Acad Sci 2011, 1215:161-169.
  • [265]Fukao H, Ijiri Y, Miura M, Hashimoto M, Yamashita T, Fukunaga C, Oiwa K, Kawai Y, Suwa M, Yamamoto J: Effect of trans-resveratrol on the thrombogenicity and atherogenicity in apolipoprotein E-deficient and low-density lipoprotein receptor-deficient mice. Blood Coagul Fibrinolysis 2004, 15:441-446.
  • [266]Zang M, Xu S, Maitland-Toolan KA, Zuccollo A, Hou X, Jiang B, Wierzbicki M, Verbeuren TJ, Cohen RA: Polyphenols stimulate AMP-activated protein kinase, lower lipids, and inhibit accelerated atherosclerosis in diabetic LDL receptor-deficient mice. Diabetes 2006, 55:2180-2191.
  • [267]Do GM, Kwon EY, Kim HJ, Jeon SM, Ha TY, Park T, Choi MS: Long-term effects of resveratrol supplementation on suppression of atherogenic lesion formation and cholesterol synthesis in apo E-deficient mice. Biochem Biophys Res Commun 2008, 374:55-59.
  • [268]Verschuren L, Wielinga PY, van DW, Tijani S, Toet K, van OB, Kooistra T, Kleemann R: A dietary mixture containing fish oil, resveratrol, lycopene, catechins, and vitamins E and C reduces atherosclerosis in transgenic mice. J Nutr 2011, 141:863-869.
  • [269]Wang Z, Zou J, Cao K, Hsieh TC, Huang Y, Wu JM: Dealcoholized red wine containing known amounts of resveratrol suppresses atherosclerosis in hypercholesterolemic rabbits without affecting plasma lipid levels. Int J Mol Med 2005, 16:533-540.
  • [270]Park CS, Lee YC, Kim JD, Kim HM, Kim CH: Inhibitory effects of Polygonum cuspidatum water extract (PCWE) and its component resveratrol [correction of rasveratrol] on acyl-coenzyme A-cholesterol acyltransferase activity for cholesteryl ester synthesis in HepG2 cells. Vascul Pharmacol 2004, 40:279-284.
  • [271]Rong JX, Blachford C, Feig JE, Bander I, Mayne J, Kusunoki J, Miller C, Davis M, Wilson M, Dehn S, Thorp E, Tabas I, Taubman MB, Rudel LL, Fisher EA: ACAT inhibition reduces the progression of preexisting, advanced atherosclerotic mouse lesions without plaque or systemic toxicity. Arterioscler Thromb Vasc Biol 2013, 33:4-12.
  • [272]Eguchi K, Fujiwara Y, Hayashida A, Horlad H, Kato H, Rotinsulu H, Losung F, Mangindaan RE, de Voogd NJ, Takeya M, Tsukamoto S: Manzamine A, a marine-derived alkaloid, inhibits accumulation of cholesterol ester in macrophages and suppresses hyperlipidemia and atherosclerosis in vivo. Bioorg Med Chem 2013, 21:3831-3838.
  • [273]Alegret M, Llaverias G, Silvestre JS: Acyl coenzyme A:cholesterol acyltransferase inhibitors as hypolipidemic and antiatherosclerotic drugs. Methods Find Exp Clin Pharmacol 2004, 26:563-586.
  • [274]Puglielli L, Konopka G, Pack-Chung E, Ingano LA, Berezovska O, Hyman BT, Chang TY, Tanzi RE, Kovacs DM: Acyl-coenzyme A: cholesterol acyltransferase modulates the generation of the amyloid beta-peptide. Nat Cell Biol 2001, 3:905-912.
  • [275]Huttunen HJ, Peach C, Bhattacharyya R, Barren C, Pettingell W, Hutter-Paier B, Windisch M, Berezovska O, Kovacs DM: Inhibition of acyl-coenzyme A: cholesterol acyl transferase modulates amyloid precursor protein trafficking in the early secretory pathway. FASEB J 2009, 23:3819-3828.
  • [276]Huttunen HJ, Havas D, Peach C, Barren C, Duller S, Xia W, Frosch MP, Hutter-Paier B, Windisch M, Kovacs DM: The acyl-coenzyme A: cholesterol acyltransferase inhibitor CI-1011 reverses diffuse brain amyloid pathology in aged amyloid precursor protein transgenic mice. J Neuropathol Exp Neurol 2010, 69:777-788.
  • [277]Murphy SR, Chang CC, Dogbevia G, Bryleva EY, Bowen Z, Hasan MT, Chang TY: Acat1 knockdown gene therapy decreases amyloid-beta in a mouse model of Alzheimer’s disease. Mol Ther 2013, 21:1497-1506.
  • [278]Bond M, Rogers G, Peters J, Anderson R, Hoyle M, Miners A, Moxham T, Davis S, Thokala P, Wailoo A, Jeffreys M, Hyde C: The effectiveness and cost-effectiveness of donepezil, galantamine, rivastigmine and memantine for the treatment of Alzheimer’s disease (review of Technology Appraisal No. 111): a systematic review and economic model. Health Technol Assess 2012, 16:1-470.
  • [279]Inanaga K, Ichiki T, Miyazaki R, Takeda K, Hashimoto T, Matsuura H, Sunagawa K: Acetylcholinesterase inhibitors attenuate atherogenesis in apolipoprotein E-knockout mice. Atherosclerosis 2010, 213:52-58.
  • [280]Koch MA, Waldmann H: Protein structure similarity clustering and natural product structure as guiding principles in drug discovery. Drug Discov Today 2005, 10:471-483.
  • [281]Benyamin B, Middelberg RP, Lind PA, Valle AM, Gordon S, Nyholt DR, Medland SE, Henders AK, Heath AC, Madden PA, Visscher PM, O'Connor DT, Montgomery GW, Martin NG, Whitfield JB: GWAS of butyrylcholinesterase activity identifies four novel loci, independent effects within BCHE and secondary associations with metabolic risk factors. Hum Mol Genet 2011, 20:4504-4514.
  • [282]Ramanan VK, Risacher SL, Nho K, Kim S, Swaminathan S, Shen L, Foroud TM, Hakonarson H, Huentelman MJ, Aisen PS, Petersen RC, Green RC, Jack CR, Koeppe RA, Jagust WJ, Weiner MW, Saykin AJ: APOE and BCHE as modulators of cerebral amyloid deposition: a florbetapir PET genome-wide association study. Mol Psychiatry 2013, 19:351-357.
  • [283]Chelliah J, Smith JD, Fariss MW: Inhibition of cholinesterase activity by tetrahydroaminoacridine and the hemisuccinate esters of tocopherol and cholesterol. Biochim Biophys Acta 1994, 1206:17-26.
  • [284]Tracey KJ, Czura CJ, Ivanova S: Mind over immunity. FASEB J 2001, 15:1575-1576.
  • [285]Roher AE, Tyas SL, Maarouf CL, Daugs ID, Kokjohn TA, Emmerling MR, Garami Z, Belohlavek M, Sabbagh MN, Sue LI, Beach TG: Intracranial atherosclerosis as a contributing factor to Alzheimer’s disease dementia. Alzheimers Dement 2011, 7:436-444.
  • [286]Ray M, Ruan J, Zhang W: Variations in the transcriptome of Alzheimer’s disease reveal molecular networks involved in cardiovascular diseases. Genome Biol 2008, 9:R148. BioMed Central Full Text
  • [287]Burgos JS, Ramirez C, Sastre I, Bullido MJ, Valdivieso F: ApoE4 is more efficient than E3 in brain access by herpes simplex virus type 1. Neuroreport 2003, 14:1825-1827.
  • [288]Nazzal D, Therville N, Yacoub-Youssef H, Garcia V, Thomsen M, Levade T, Segui B, Benoist H: Apolipoprotein E-deficient mice develop an anti-Chlamydophila pneumoniae T helper 2 response and resist vascular infection. J Infect Dis 2010, 202:782-790.
  • [289]de BN, Netea MG, Demacker PN, Kullberg BJ, van der Meer JW, Stalenhoef AF: Apolipoprotein E-deficient mice have an impaired immune response to Klebsiella pneumoniae. Eur J Clin Invest 2000, 30:818-822.
  • [290]Roselaar SE, Daugherty A: Apolipoprotein E-deficient mice have impaired innate immune responses to Listeria monocytogenes in vivo. J Lipid Res 1998, 39:1740-1743.
  • [291]Ghosh J, Das S, Guha R, Ghosh D, Naskar K, Das A, Roy S: Hyperlipidemia offers protection against Leishmania donovani infection: role of membrane cholesterol. J Lipid Res 2012, 53:2560-2572.
  • [292]Burgos JS, Ramirez C, Sastre I, Valdivieso F: Effect of apolipoprotein E on the cerebral load of latent herpes simplex virus type 1 DNA. J Virol 2006, 80:5383-5387.
  • [293]Portugal LR, Fernandes LR, Pietra Pedroso VS, Santiago HC, Gazzinelli RT, Alvarez-Leite JI: Influence of low-density lipoprotein (LDL) receptor on lipid composition, inflammation and parasitism during Toxoplasma gondii infection. Microbes Infect 2008, 10:276-284.
  • [294]Burt TD, Agan BK, Marconi VC, He W, Kulkarni H, Mold JE, Cavrois M, Huang Y, Mahley RW, Dolan MJ, McCune JM, Ahuja SK: Apolipoprotein (apo) E4 enhances HIV-1 cell entry in vitro, and the APOE epsilon4/epsilon4 genotype accelerates HIV disease progression. Proc Natl Acad Sci U S A 2008, 105:8718-8723.
  • [295]Gerard HC, Wildt KL, Whittum-Hudson JA, Lai Z, Ager J, Hudson AP: The load of Chlamydia pneumoniae in the Alzheimer’s brain varies with APOE genotype. Microb Pathog 2005, 39:19-26.
  • [296]Wozniak MA, Faragher EB, Todd JA, Koram KA, Riley EM, Itzhaki RF: Does apolipoprotein E polymorphism influence susceptibility to malaria? J Med Genet 2003, 40:348-351.
  • [297]Lathe R: Steroid and sterol 7-hydroxylation: Ancient pathways. Steroids 2002, 67:967-977.
  • [298]Morel DW, Edgerton ME, Warner GE, Johnson WJ, Phillips MC, Rothblat GH: Comparison of the intracellular metabolism and trafficking of 25-hydroxycholesterol and cholesterol in macrophages. J Lipid Res 1996, 37:2041-2051.
  • [299]Zhao C, Dahlman-Wright K: Liver X receptor in cholesterol metabolism. J Endocrinol 2010, 204:233-240.
  • [300]Janowski BA, Grogan MJ, Jones SA, Wisely GB, Kliewer SA, Corey EJ, Mangelsdorf DJ: Structural requirements of ligands for the oxysterol liver X receptors LXRalpha and LXRbeta. Proc Natl Acad Sci U S A 1999, 96:266-271.
  • [301]Fu X, Menke JG, Chen Y, Zhou G, MacNaul KL, Wright SD, Sparrow CP, Lund EG: 27-hydroxycholesterol is an endogenous ligand for liver X receptor in cholesterol-loaded cells. J Biol Chem 2001, 276:38378-38387.
  • [302]Nelson ER, DuSell CD, Wang X, Howe MK, Evans G, Michalek RD, Umetani M, Rathmell JC, Khosla S, Gesty-Palmer D, McDonnell DP: The oxysterol, 27-hydroxycholesterol, links cholesterol metabolism to bone homeostasis through its actions on the estrogen and liver X receptors. Endocrinology 2011, 152:4691-4705.
  • [303]Vaya J, Aviram M, Mahmood S, Hayek T, Grenadir E, Hoffman A, Milo S: Selective distribution of oxysterols in atherosclerotic lesions and human plasma lipoproteins. Free Radic Res 2001, 34:485-497.
  • [304]Brown AJ, Jessup W: Oxysterols and atherosclerosis. Atherosclerosis 1999, 142:1-28.
  • [305]Heverin M, Bogdanovic N, Lutjohann D, Bayer T, Pikuleva I, Bretillon L, Diczfalusy U, Winblad B, Bjorkhem I: Changes in the levels of cerebral and extracerebral sterols in the brain of patients with Alzheimer’s disease. J Lipid Res 2004, 45:186-193.
  • [306]Shafaati M, Marutle A, Pettersson H, Lovgren-Sandblom A, Olin M, Pikuleva I, Winblad B, Nordberg A, Bjorkhem I: Marked accumulation of 27-hydroxycholesterol in the brains of Alzheimer’s patients with the Swedish APP 670/671 mutation. J Lipid Res 2011, 52:1004-1010.
  • [307]Wisniewski T, Newman K, Javitt NB: Alzheimer’s disease: brain desmosterol levels. J Alzheimers Dis 2013, 33:881-888.
  • [308]Javitt NB: Alzheimer’s disease: neuroprogesterone, epoxycholesterol, and ABC transporters as determinants of neurodesmosterol tissue levels and its role in amyloid protein processing. J Alzheimers Dis 2013, 35:441-450.
  • [309]Blanc M, Hsieh WY, Robertson KA, Kropp KA, Forster T, Shui G, Lacaze P, Watterson S, Griffiths SJ, Spann NJ, Meljon A, Talbot S, Krishnan K, Covey DF, Wenk MR, Craigon M, Ruzsics Z, Haas J, Angulo A, Griffiths WJ, Glass CK, Wang Y, Ghazal P: The transcription factor STAT-1 couples macrophage synthesis of 25-hydroxycholesterol to the interferon antiviral response. Immunity 2013, 38:106-118.
  • [310]Diczfalusy U, Bjorkhem I: Still another activity by the highly promiscuous enzyme CYP3A4: 25-hydroxylation of cholesterol. J Lipid Res 2011, 52:1447-1449.
  • [311]Lund E, Bjorkhem I, Furster C, Wikvall K: 24-, 25- and 27-hydroxylation of cholesterol by a purified preparation of 27-hydroxylase from pig liver. Biochim Biophys Acta 1993, 1166:177-182.
  • [312]Lund EG, Guileyardo JM, Russell DW: cDNA cloning of cholesterol 24-hydroxylase, a mediator of cholesterol homeostasis in the brain. Proc Natl Acad Sci U S A 1999, 96:7238-7243.
  • [313]Lund EG, Kerr TA, Sakai J, Li WP, Russell DW: cDNA cloning of mouse and human cholesterol 25-hydroxylases, polytopic membrane proteins that synthesize a potent oxysterol regulator of lipid metabolism. J Biol Chem 1998, 273:34316-34327.
  • [314]Diczfalusy U, Olofsson KE, Carlsson AM, Gong M, Golenbock DT, Rooyackers O, Flaring U, Bjorkbacka H: Marked upregulation of cholesterol 25-hydroxylase expression by lipopolysaccharide. J Lipid Res 2009, 50:2258-2264.
  • [315]Park K, Scott AL: Cholesterol 25-hydroxylase production by dendritic cells and macrophages is regulated by type I interferons. J Leukoc Biol 2010, 88:1081-1087.
  • [316]Brown MS, Dana SE, Goldstein JL: Cholesterol ester formation in cultured human fibroblasts. Stimulation by oxygenated sterols. J Biol Chem 1975, 250:4025-4027.
  • [317]Cheng D, Chang CC, Qu X, Chang TY: Activation of acyl-coenzyme A: cholesterol acyltransferase by cholesterol or by oxysterol in a cell-free system. J Biol Chem 1995, 270:685-695.
  • [318]Gold ES, Ramsey SA, Sartain MJ, Selinummi J, Podolsky I, Rodriguez DJ, Moritz RL, Aderem A: ATF3 protects against atherosclerosis by suppressing 25-hydroxycholesterol-induced lipid body formation. J Exp Med 2012, 209:807-817.
  • [319]Waltl S, Patankar JV, Fauler G, Nusshold C, Ullen A, Eibinger G, Wintersperger A, Kratky D, Malle E, Sattler W: 25-Hydroxycholesterol regulates cholesterol homeostasis in the murine CATH.a neuronal cell line. Neurosci Lett 2013, 539:16-21.
  • [320]Liu SY, Aliyari R, Chikere K, Li G, Marsden MD, Smith JK, Pernet O, Guo H, Nusbaum R, Zack JA, Freiberg AN, Su L, Lee B, Cheng G: Interferon-inducible cholesterol-25-hydroxylase broadly inhibits viral entry by production of 25-hydroxycholesterol. Immunity 2013, 38:92-105.
  • [321]Shibata N, Carlin AF, Spann NJ, Saijo K, Morello CS, McDonald JG, Romanoski CE, Maurya MR, Kaikkonen MU, Lam MT, Crotti A, Reichart D, Fox JN, Quehenberger O, Raetz CR, Sullards MC, Murphy RC, Merrill AH Jr, Brown HA, Dennis EA, Fahy E, Subramaniam S, Cavener DR, Spector DH, Russell DW, Glass CK: 25-Hydroxycholesterol activates the integrated stress response to reprogram transcription and translation in macrophages. J Biol Chem 2013, 288:35812-35823.
  • [322]Hannedouche S, Zhang J, Yi T, Shen W, Nguyen D, Pereira JP, Guerini D, Baumgarten BU, Roggo S, Wen B, Knochenmuss R, Noel S, Gessier F, Kelly LM, Vanek M, Laurent S, Preuss I, Miault C, Christen I, Karuna R, Li W, Koo DI, Suply T, Schmedt C, Peters EC, Falchetto R, Katopodis A, Spanka C, Roy MO, Detheux M, et al.: Oxysterols direct immune cell migration via EBI2. Nature 2011, 475:524-527.
  • [323]Diczfalusy U: On the formation and possible biological role of 25-hydroxycholesterol. Biochimie 2013, 95:455-460.
  • [324]Rose K, Allan A, Gauldie S, Stapleton G, Dobbie L, Dott K, Martin C, Wang L, Hedlund E, Seckl JR, Gustafsson JA, Lathe R: Neurosteroid hydroxylase CYP7B: vivid reporter activity in dentate gyrus of gene-targeted mice and abolition of a widespread pathway of steroid and oxysterol hydroxylation. J Biol Chem 2001, 276:23937-23944.
  • [325]Yi T, Wang X, Kelly LM, An J, Xu Y, Sailer AW, Gustafsson JA, Russell DW, Cyster JG: Oxysterol gradient generation by lymphoid stromal cells guides activated B cell movement during humoral responses. Immunity 2012, 37:535-548.
  • [326]Dawson PA, van der Westhuyzen DR, Goldstein JL, Brown MS: Purification of oxysterol binding protein from hamster liver cytosol. J Biol Chem 1989, 264:9046-9052.
  • [327]Burgett AW, Poulsen TB, Wangkanont K, Anderson DR, Kikuchi C, Shimada K, Okubo S, Fortner KC, Mimaki Y, Kuroda M, Murphy JP, Schwalb DJ, Petrella EC, Cornella-Taracido I, Schirle M, Tallarico JA, Shair MD: Natural products reveal cancer cell dependence on oxysterol-binding proteins. Nat Chem Biol 2011, 7:639-647.
  • [328]Ridgway ND, Dawson PA, Ho YK, Brown MS, Goldstein JL: Translocation of oxysterol binding protein to Golgi apparatus triggered by ligand binding. J Cell Biol 1992, 116:307-319.
  • [329]Goto A, Liu X, Robinson CA, Ridgway ND: Multisite phosphorylation of oxysterol-binding protein regulates sterol binding and activation of sphingomyelin synthesis. Mol Biol Cell 2012, 23:3624-3635.
  • [330]Zerbinatti CV, Cordy JM, Chen CD, Guillily M, Suon S, Ray WJ, Seabrook GR, Abraham CR, Wolozin B: Oxysterol-binding protein-1 (OSBP1) modulates processing and trafficking of the amyloid precursor protein. Mol Neurodegener 2008, 3:5. BioMed Central Full Text
  • [331]Yan D, Jauhiainen M, Hildebrand RB, van Willems DK, van Berkel TJ, Ehnholm C, Van EM, Olkkonen VM: Expression of human OSBP-related protein 1 L in macrophages enhances atherosclerotic lesion development in LDL receptor-deficient mice. Arterioscler Thromb Vasc Biol 2007, 27:1618-1624.
  • [332]Olkkonen VM: Macrophage oxysterols and their binding proteins: roles in atherosclerosis. Curr Opin Lipidol 2012, 23:462-470.
  • [333]Lappano R, Recchia AG, de Francesco EM, Angelone T, Cerra MC, Picard D, Maggiolini M: The cholesterol metabolite 25-hydroxycholesterol activates estrogen receptor alpha-mediated signaling in cancer cells and in cardiomyocytes. PLoS One 2011, 6:e16631.
  • [334]Hulce JJ, Cognetta AB, Niphakis MJ, Tully SE, Cravatt BF: Proteome-wide mapping of cholesterol-interacting proteins in mammalian cells. Nat Methods 2013, 10:259-264.
  • [335]Coronary Artery Disease (C4D) Genetics Consortium: A genome-wide association study in Europeans and South Asians identifies five new loci for coronary artery disease. Nat Genet 2011, 43:339-344.
  • [336]IBC 50K CAD Consortium: Large-scale gene-centric analysis identifies novel variants for coronary artery disease. PLoS Genet 2011, 7:e1002260.
  • [337]Papassotiropoulos A, Lambert JC, Wavrant-De Vrieze F, Wollmer MA, von der KH, Streffer JR, Maddalena A, Huynh KD, Wolleb S, Lutjohann D, Schneider B, Thal DR, Grimaldi LM, Tsolaki M, Kapaki E, Ravid R, Konietzko U, Hegi T, Pasch T, Jung H, Braak H, Amouyel P, Rogaev EI, Hardy J, Hock C, Nitsch RM: Cholesterol 25-hydroxylase on chromosome 10q is a susceptibility gene for sporadic Alzheimer’s disease. Neurodegener Dis 2005, 2:233-241.
  • [338]Laumet G, Chouraki V, Grenier-Boley B, Legry V, Heath S, Zelenika D, Fievet N, Hannequin D, Delepine M, Pasquier F, Hanon O, Brice A, Epelbaum J, Berr C, Dartigues JF, Tzourio C, Campion D, Lathrop M, Bertram L, Amouyel P, Lambert JC: Systematic analysis of candidate genes for Alzheimer’s disease in a French, genome-wide association study. J Alzheimers Dis 2010, 20:1181-1188.
  • [339]Holmes RS, Vandeberg JL, Cox LA: Genomics and proteomics of vertebrate cholesterol ester lipase (LIPA) and cholesterol 25-hydroxylase (CH25H). 3 Biotech 2011, 1:99-109.
  • [340]Du H, Grabowski GA: Lysosomal acid lipase and atherosclerosis. Curr Opin Lipidol 2004, 15:539-544.
  • [341]Sugiura H, Koarai A, Ichikawa T, Minakata Y, Matsunaga K, Hirano T, Akamatsu K, Yanagisawa S, Furusawa M, Uno Y, Yamasaki M, Satomi Y, Ichinose M: Increased 25-hydroxycholesterol concentrations in the lungs of patients with chronic obstructive pulmonary disease. Respirology 2012, 17:533-540.
  • [342]Matkovic Z, Miravitlles M: Chronic bronchial infection in COPD. Is there an infective phenotype? Respir Med 2013, 107:10-22.
  • [343]Zhang Y, Yu C, Liu J, Spencer TA, Chang CC, Chang TY: Cholesterol is superior to 7-ketocholesterol or 7 alpha-hydroxycholesterol as an allosteric activator for acyl-coenzyme A:cholesterol acyltransferase 1. J Biol Chem 2003, 278:11642-11647.
  • [344]Miller SC, Melnykovych G: Regulation of cholesterol biosynthesis and esterification by 25-hydroxycholesterol in a macrophage-like cell line: uncoupling by progesterone. J Lipid Res 1984, 25:991-999.
  • [345]Chang TY, Chang CC, Bryleva E, Rogers MA, Murphy SR: Neuronal cholesterol esterification by ACAT1 in Alzheimer’s disease. IUBMB Life 2010, 62:261-267.
  • [346]Lange Y, Ye J, Rigney M, Steck TL: Regulation of endoplasmic reticulum cholesterol by plasma membrane cholesterol. J Lipid Res 1999, 40:2264-2270.
  • [347]An S, Jang YS, Park JS, Kwon BM, Paik YK, Jeong TS: Inhibition of acyl-coenzyme A:cholesterol acyltransferase stimulates cholesterol efflux from macrophages and stimulates farnesoid X receptor in hepatocytes. Exp Mol Med 2008, 40:407-417.
  • [348]Burns MP, Noble WJ, Olm V, Gaynor K, Casey E, LaFrancois J, Wang L, Duff K: Co-localization of cholesterol, apolipoprotein E and fibrillar Abeta in amyloid plaques. Brain Res Mol Brain Res 2003, 110:119-125.
  • [349]Nelson TJ, Alkon DL: Oxidation of cholesterol by amyloid precursor protein and beta-amyloid peptide. J Biol Chem 2005, 280:7377-7387.
  • [350]Yoshimoto N, Tasaki M, Shimanouchi T, Umakoshi H, Kuboi R: Oxidation of cholesterol catalyzed by amyloid beta-peptide (Abeta)-Cu complex on lipid membrane. J Biosci Bioeng 2005, 100:455-459.
  • [351]Puglielli L, Friedlich AL, Setchell KD, Nagano S, Opazo C, Cherny RA, Cherny RA, Barnham KJ, Wade JD, Melov S, Kovacs DM, Bush AI: Alzheimer disease beta-amyloid activity mimics cholesterol oxidase. J Clin Invest 2005, 115:2556-2563.
  • [352]Nelson PT, Alafuzoff I, Bigio EH, Bouras C, Braak H, Cairns NJ, Castellani RJ, Crain BJ, Davies P, Del TK, Duyckaerts C, Frosch MP, Haroutunian V, Hof PR, Hulette CM, Hyman BT, Iwatsubo T, Jellinger KA, Jicha GA, Kovari E, Kukull WA, Leverenz JB, Love S, Mackenzie IR, Mann DM, Masliah E, McKee AC, Montine TJ, Morris JC, Schneider JA, et al.: Correlation of Alzheimer disease neuropathologic changes with cognitive status: a review of the literature. J Neuropathol Exp Neurol 2012, 71:362-381.
  • [353]Soscia SJ, Kirby JE, Washicosky KJ, Tucker SM, Ingelsson M, Hyman B, Burton MA, Goldstein LE, Duong S, Tanzi RE, Moir RD: The Alzheimer’s disease-associated amyloid beta-protein is an antimicrobial peptide. PLoS One 2010, 5:e9505.
  • [354]Green RC, Schneider LS, Amato DA, Beelen AP, Wilcock G, Swabb EA, Zavitz KH: Effect of tarenflurbil on cognitive decline and activities of daily living in patients with mild Alzheimer disease: a randomized controlled trial. JAMA 2009, 302:2557-2564.
  • [355]Weksler ME, Gouras G, Relkin NR, Szabo P: The immune system, amyloid-beta peptide, and Alzheimer’s disease. Immunol Rev 2005, 205:244-256.
  • [356]Finch CE, Sapolsky RM: The evolution of Alzheimer disease, the reproductive schedule, and apoE isoforms. Neurobiol Aging 1999, 20:407-428.
  • [357]Ashley-Koch A, Yang Q, Olney RS: Sickle hemoglobin (HbS) allele and sickle cell disease: a HuGE review. Am J Epidemiol 2000, 151:839-845.
  • [358]Bjorkhem I: Rediscovery of cerebrosterol. Lipids 2007, 42:5-14.
  • [359]He X, Ong WY, Hua Q: Distribution of cholesterol 24-hydroxylase in the monkey brain. Neurosci Bull 2010, 26:197-204.
  • [360]Kolsch H, Lutjohann D, Ludwig M, Schulte A, Ptok U, Jessen F, von BK, Rao ML, Maier W, Heun R: Polymorphism in the cholesterol 24S-hydroxylase gene is associated with Alzheimer’s disease. Mol Psychiatry 2002, 7:899-902.
  • [361]Strittmatter WJ, Saunders AM, Goedert M, Weisgraber KH, Dong LM, Jakes R, Huang DY, Pericak-Vance M, Schmechel D, Roses AD: Isoform-specific interactions of apolipoprotein E with microtubule-associated protein tau: implications for Alzheimer disease. Proc Natl Acad Sci U S A 1994, 91:11183-11186.
  • [362]Barton ES, White DW, Cathelyn JS, Brett-McClellan KA, Engle M, Diamond MS, Miller VL, Virgin HW: Herpesvirus latency confers symbiotic protection from bacterial infection. Nature 2007, 447:326-329.
  • [363]Sene A, Khan AA, Cox D, Nakamura RE, Santeford A, Kim BM, Sidhu R, Onken MD, Harbour JW, Hagbi-Levi S, Chowers I, Edwards PA, Baldan A, Parks JS, Ory DS, Apte RS: Impaired cholesterol efflux in senescent macrophages promotes age-related macular degeneration. Cell Metab 2013, 17:549-561.
  • [364]Conboy IM, Conboy MJ, Wagers AJ, Girma ER, Weissman IL, Rando TA: Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nature 2005, 433:760-764.
  文献评价指标  
  下载次数:28次 浏览次数:23次