期刊论文详细信息
BMC Genetics
Breed, sex and anatomical location-specific gene expression profiling of the porcine skeletal muscles
Xuewei Li2  Mingzhou Li2  Jinyong Wang1  Surong Shuai2  Li Zhu2  Anan Jiang2  Lei Chen1  Jideng Ma2  Chaowei Zhou2  Jie Zhang2 
[1] Chongqing Academy of Animal Science, Chongqing 402460, China;Institute of Animal Genetics & Breeding, College of Animal Science & Technology, Sichuan Agricultural University, Ya’an, Sichuan 625000, China
关键词: Pig;    Muscle;    Microarray;    Gene expression;   
Others  :  1086953
DOI  :  10.1186/1471-2156-14-53
 received in 2013-03-11, accepted in 2013-06-07,  发布年份 2013
PDF
【 摘 要 】

Background

Skeletal muscle is one of the most important economic traits in agricultural animals, especially in pigs. In the modern pig industry, lean type pigs have undergone strong artificial selection for muscle growth, which has led to remarkable phenotypic variations compared with fatty type pigs, making these different breeds an ideal model for comparative studies.

Results

Here, we present comprehensive gene expression profiling for the white (longissimus dorsi muscle) and the red (psoas major muscle) skeletal muscles among male and female fatty Rongchang, feral Tibetan and lean Landrace pigs, using a microarray approach. We identified differentially expressed genes that may be associated the phenotypic differences of porcine muscles among the breeds, between the sexes and the anatomical locations. We also used a clustering method to identify sets of functionally coexpressed genes that are linked to different muscle phenotypes. We showed that, compared with the white muscles, which primarily modulate metabolic processes, the red muscles show a tendency to be a risk factor for inflammation and immune-related disorders.

Conclusions

This analysis presents breed-, sex- and anatomical location-specific gene expression profiles and further identified genes that may be associated with the phenotypic differences in porcine muscles among breeds, between the sexes and the anatomical locations.

【 授权许可】

   
2013 Zhang et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150116021103792.pdf 2220KB PDF download
Figure 4. 100KB Image download
Figure 3. 112KB Image download
Figure 2. 106KB Image download
Figure 1. 71KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Motta VF, de Lacerda CAM: Beneficial Effects of Exercise Training (Treadmill) on Body Mass and Skeletal Muscle Capillaries/Myocyte Ratio in C57BL/6 Mice Fed High-Fat Diet. Int J Morpho 2012, 30(1):205-210.
  • [2]Matsakas A, Patel K: Skeletal muscle fibre plasticity in response to selected environmental and physiological stimuli. Histol Histopathol 2009, 24(5):611-629.
  • [3]Choi Y, Kim B: Muscle fiber characteristics, myofibrillar protein isoforms, and meat quality. Livest Sci 2009, 122(2):105-118.
  • [4]Kim NK, Joh JH, Park HR, Kim OH, Park BY, Lee CS: Differential expression profiling of the proteomes and their mRNAs in porcine white and red skeletal muscles. Proteomics 2004, 4(11):3422-3428.
  • [5]Pette D, Staron R: Cellular and molecular diversities of mammalian skeletal muscle fibers. Rev Physiol Biochem Pharmacol 1990, 116:1-76.
  • [6]Campbell WG, Gordon SE, Carlson CJ, Pattison JS, Hamilton MT, Booth FW: Differential global gene expression in red and white skeletal muscle. Am J Physiol Cell Physiol 2001, 280(4):C763-C768.
  • [7]Mo K, Razak Z, Rao P, Yu Z, Adachi H, Katsuno M, Sobue G, Lieberman AP, Westwood JT, Monks DA: Microarray analysis of gene expression by skeletal muscle of three mouse models of Kennedy disease/spinal bulbar muscular atrophy. PLoS One 2010, 5(9):e12922.
  • [8]Wolfs M, Rensen S, Bruin-Van Dijk E, Verdam F, Greve JW, Sanjabi B, Bruinenberg M, Wijmenga C, Van Haeften T, Buurman W: Co-expressed immune and metabolic genes in visceral and subcutaneous adipose tissue from severely obese individuals are associated with plasma HDL and glucose levels: a microarray study. BMC Med Genomics 2010, 3(1):34. BioMed Central Full Text
  • [9]Laughlin MH, Schrage WG, McAllister RM, Garverick H, Jones A: Interaction of gender and exercise training: vasomotor reactivity of porcine skeletal muscle arteries. J Appl Physiol 2001, 90(1):216-227.
  • [10]Laughlin MH, Welshons WV, Sturek M, Rush JWE, Turk JR, Taylor JA, Judy BM, Henderson KK, Ganjam V: Gender, exercise training, and eNOS expression in porcine skeletal muscle arteries. J Appl Physiol 2003, 95(1):250-264.
  • [11]Glenmark B, Nilsson M, Gao H, Gustafsson JÅ, Dahlman-Wright K, Westerblad H: Difference in skeletal muscle function in males vs. females: role of estrogen receptor-β. Am J Physiol Endocrinol Metab 2004, 287(6):E1125-E1131.
  • [12]Roth SM, Ferrell RE, Peters DG, Metter EJ, Hurley BF, Rogers MA: Influence of age, sex, and strength training on human muscle gene expression determined by microarray. Physiol Genomics 2002, 10(3):181-190.
  • [13]Prather RS, Shen M, Dai Y: Genetically modified pigs for medicine and agriculture. Biotechnol Genet Eng Rev 2008, 25(1):245-265.
  • [14]Rocha D, Plastow G: Commercial pigs: an untapped resource for human obesity research? Drug Discov Today 2006, 11(11–12):475-477.
  • [15]Andersson L: How selective sweeps in domestic animals provide new insight into biological mechanisms. J Int Medicine 2011, 271(1):1-14.
  • [16]Bai Q, McGillivray C, Da Costa N, Dornan S, Evans G, Stear M, Chang KC: Development of a porcine skeletal muscle cDNA microarray: analysis of differential transcript expression in phenotypically distinct muscles. BMC Genomics 2003, 4(1):8-15. BioMed Central Full Text
  • [17]Li Y, Xu Z, Li H, Xiong Y, Zuo B: Differential transcriptional analysis between red and white skeletal muscle of Chinese Meishan pigs. Int J Biol Sci 2010, 6(4):350-360.
  • [18]Li M, Wu H, Luo Z, Xia Y, Guan J, Wang T, Gu Y, Chen L, Zhang K, Ma J, et al.: An atlas of DNA methylomes in porcine adipose and muscle tissues. Nat Commun 2012, 3:850.
  • [19]Trendelenburg AU, Meyer A, Rohner D, Boyle J, Hatakeyama S, Glass DJ: Myostatin reduces Akt/TORC1/p70S6K signaling, inhibiting myoblast differentiation and myotube size. Am J Physiol Cell Physiol 2009, 296(6):C1258-C1270.
  • [20]Hasty P, Bradley A, Morris JH, Edmondson DG, Venuti JM, Olson EN, Klein WH: Muscle deficiency and neonatal death in mice with a targeted mutation in the myogenin gene. Nature 1993, 364(6437):501-506.
  • [21]Nabeshima Y, Hanaoka K, Hayasaka M, Esuml E, Li S, Nonaka I: Myogenin gene disruption results in perinatal lethality because of severe muscle defect. Nature 1993, 364(6437):532-535.
  • [22]Kambadur R, Sharma M, Smith TP, Bass JJ: Mutations in myostatin (GDF8) in double-muscled Belgian Blue and Piedmontese cattle. Genome Res 1997, 7(9):910-916.
  • [23]Rivera-Ferre MG, Aguilera JF, Nieto R: Muscle fractional protein synthesis is higher in Iberian than in Landrace growing pigs fed adequate or lysine-deficient diets. J Nutr 2005, 135(3):469-478.
  • [24]Senaeme C, Istasse L, Baldwin P, Gabriel A, Haan V, Bienfait JM: Muscle protein turnover in young bulls in relation to breed and hormonal status. Asian-Austral J Animal Sci 1989, 2(3):200-201.
  • [25]Vidal-Puig A, Solanes G, Grujic D, Flier JS, Lowell BB: UCP3: an uncoupling protein homologue expressed preferentially and abundantly in skeletal muscle and brown adipose tissue. Biochem Biophys Res Commun 1997, 235(1):79-82.
  • [26]Louis M, Van Beneden R, Dehoux M, Thissen JP, Francaux M: Creatine increases IGF-I and myogenic regulatory factor mRNA in C2C12 cells. FEBS Lett 2004, 557(1):243-247.
  • [27]Cagnazzo M, Te Pas MF, Priem J, De Wit AA, Pool MH, Davoli R, Russo V: Comparison of prenatal muscle tissue expression profiles of two pig breeds differing in muscle characteristics. J Anim Sci 2006, 84(1):1-10.
  • [28]Cadoudal T, Distel E, Durant S, Fouque F, Blouin JM, Collinet M, Bortoli S, Forest C, Benelli C: Pyruvate dehydrogenase kinase 4: regulation by thiazolidinediones and implication in glyceroneogenesis in adipose tissue. Diabetes 2008, 57(9):2272-2279.
  • [29]Muthny T, Kovarik M, Sispera L, Tilser I, Holecek M: Protein metabolism in slow- and fast-twitch skeletal muscle during turpentine-induced inflammation. Int J Exp Pathol 2008, 89(1):64-71.
  • [30]Auclair D, Garrel DR, Chaouki Zerouala A, Ferland LH: Activation of the ubiquitin pathway in rat skeletal muscle by catabolic doses of glucocorticoids. Am J Physiol 1997, 272(3):C1007-1016.
  • [31]Cleveland BM, Evenhuis JP: Molecular characterization of atrogin-1/F-box protein-32 (FBXO32) and F-box protein-25 (FBXO25) in rainbow trout (Oncorhynchus mykiss): Expression across tissues in response to feed deprivation. Comp Biochem Physiol B Biochem Mol Biol 2010, 157(3):248-257.
  • [32]Wang X, Hu Z, Hu J, Du J, Mitch WE: Insulin resistance accelerates muscle protein degradation: Activation of the ubiquitin-proteasome pathway by defects in muscle cell signaling. Endocrinology 2006, 147(9):4160-4168.
  • [33]Reid MB: Response of the ubiquitin-proteasome pathway to changes in muscle activity. Am J Physiol Regul Integr Comp Physiol 2005, 288(6):R1423-R1431.
  • [34]Agrawal P, Chen Y-T, Schilling B, Gibson BW, Hughes RE: Ubiquitin-specific Peptidase 9, X-linked (USP9X) Modulates Activity of Mammalian Target of Rapamycin (mTOR). J Biol Chem 2012, 287(25):21164-21175.
  • [35]Chang Y, Yu Y, Wang N, Xu Y: Cloning and characterization of syap1, a down regulated gene in human hepatocellular carcinoma. Shi Yan Sheng Wu Xue Bao 2001, 34(4):319-322.
  • [36]Lahn BT, Page DC: Functional coherence of the human Y chromosome. Science 1997, 278(5338):675-680.
  • [37]Brocker C, Carpenter C, Nebert DW, Vasiliou V: Evolutionary divergence and functions of the human acyl-CoA thioesterase gene ( ACOT ) family. Hum Genomics 2010, 4(6):411-420. BioMed Central Full Text
  • [38]Hakme A, Huber A, Dolle P, Schreiber V: The macroPARP genes Parp-9 and Parp-14 are developmentally and differentially regulated in mouse tissues. Dev Dyn 2008, 237(1):209-215.
  • [39]Lourim D, Lin JJ-C: Apolipoprotein A-1 expression is resistant to dimethyl sulfoxide inhibition of myogenic differentiation. Exp Cell Res 1991, 197(1):57-65.
  • [40]Bass A, Brdiczka D, Eyer P, Hofer S, Pette D: Metabolic differentiation of distinct muscle types at the level of enzymatic organization. Euro J Biochem 1969, 10(2):198-206.
  • [41]Ryu Y, Kim B: The relationship between muscle fiber characteristics, postmortem metabolic rate, and meat quality of pig longissimus dorsi muscle. Meat Sci 2005, 71(2):351-357.
  • [42]Crum-Cianflone NF: Bacterial, fungal, parasitic, and viral myositis. Clin Microbiol Rev 2008, 21(3):473-494.
  • [43]Itskowitz MS, Jones SM: GI Consult: Appendicitis. Emerg Med 2004, 36(10):10-15.
  • [44]Miller T, Al-Lozi M, Lopate G, Pestronk A: Myopathy with antibodies to the signal recognition particle: clinical and pathological features. J Neurol Neurosurg Psychiatry 2002, 73(4):420-428.
  • [45]Saeed A, Sharov V, White J, Li J, Liang W, Bhagabati N, Braisted J, Klapa M, Currier T, Thiagarajan M: TM4: a free, open-source system for microarray data management and analysis. Biotechniques 2003, 34(2):374-378.
  • [46]Li M, Wu H, Wang T, Xia Y, Jin L, Jiang A, Zhu L, Chen L, Li R, Li X: Co-methylated Genes in Different Adipose Depots of Pig are Associated with Metabolic, Inflammatory and Immune Processes. Int J Biol Sci 2012, 8(6):831-837.
  • [47]Da Huang W, Sherman BT, Lempicki RA: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 2009, 4(1):44-57.
  • [48]Erkens T, Van Poucke M, Vandesompele J, Goossens K, Van Zeveren A, Peelman L: Development of a new set of reference genes for normalization of real-time RT-PCR data of porcine backfat and longissimus dorsi muscle, and evaluation with PPARGC1A. BMC Biotechnol 2006, 6(1):41-48. BioMed Central Full Text
  文献评价指标  
  下载次数:0次 浏览次数:7次