期刊论文详细信息
BMC Immunology
Impairment of dendritic cell function and induction of CD4 +CD25 +Foxp3 + T cells by excretory-secretory products: a potential mechanism of immune evasion adopted by Echinococcus granulosus
Jianping Cao1  Yuan Hu1  Yuxin Xu1  Zhongying Yuan1  Haipeng Liu1  Weiping Wu1  Yanjuan Wang1  Yujuan Shen1  Hejun Zhou1  Ying Wang1 
[1] National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention; Laboratory of Parasite and Vector Biology, MOH, China, WHO Collaborating Center for Malaria, Schistosomiasis and Filariasis, Shanghai 200025, PR China
关键词: Cytokine;    Dendritic cell maturation;    Dendritic cell;    Excretory-secretory products;    Mechanism;    Echinococcus granulosus;   
Others  :  1222437
DOI  :  10.1186/s12865-015-0110-3
 received in 2014-11-21, accepted in 2015-07-22,  发布年份 2015
PDF
【 摘 要 】

Background

Cystic echinococcosis, caused by infection with Echinococcus granulosus, is one of the most widespread zoonotic helminth diseases. Modulation of host responses is an important strategy used by helminth parasites to promote infection. To better understand the mechanisms adopted by E. granulosus to escape host immune responses, we investigated the effects of excretory–secretory products (ES) and adult worm antigen (AWA) derived from adult E. granulosus on murine bone marrow-derived dendritic cells (BMDC).

Results

Compared with lipopolysaccharide (LPS), AWA, but not ES, induced BMDC maturation or stimulated BMDC cytokine production and co-stimulatory molecule expression (CD40, CD80 and MHC class II). Furthermore, ES-treated BMDCs pulsed with ovalbumin exhibited reduced co-stimulatory molecule expression in comparison with untreated BMDC, even in the presence of the strong Th1 inducer, CpG. Moreover, we detected the effects of ES-treated DC on T cell activation by an in vitro T cell priming assay. We observed that ES-treated BMDC co-cultured with DO11.10 transgenic CD4 +T cells induced the generation of CD4 + CD25 + Foxp3 +T cells. In addition, in contrast to AWA-treated BMDCs, which had markedly induced IFN-γ secretion and reduced of IL-4 levels in co-cultured T cells, ES-treated BMDCs did not modify their capacity to stimulate IFN-γ or IL-4 production by T cells.

Conclusions

We conclude that ES of adult E. granulosus inhibited DC function, impaired the development of Th1 cells induced by CpG, and induced CD4 + CD25 + Foxp3 +regulatory T cells in an IL-10-independent manner.

【 授权许可】

   
2015 Wang et al.

【 预 览 】
附件列表
Files Size Format View
20150821021639769.pdf 2518KB PDF download
Fig. 5. 90KB Image download
Fig. 4. 35KB Image download
Fig. 3. 116KB Image download
Fig. 2. 39KB Image download
Fig. 1. 54KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

【 参考文献 】
  • [1]Moro P, Schantz PM. Echinococcosis: a review. Int J Infect Dis. 2009; 3:125-33.
  • [2]Siracusano A, Rigano R, Ortona E, Profumo E, Margutti P, Buttari B et al.. Immunomodulatory mechanisms during Echinococcus granulosus infection. Exp Parasitol. 2008; 119:483-9.
  • [3]Hewitson JP, Grainger JR, Maizels RM. Helminth immunoregulation: the role of parasite secreted proteins in modulating host immunity. Mol Biochem Parasitol. 2009; 167:1-11.
  • [4]Johnston MJ, MacDonald JA, McKay DM. Parasitic helminths: a pharmacopeia of anti-inflammatory molecules. Parasitology. 2009; 136:125-47.
  • [5]Van Hellemond JJ, Retra K, Brouwers JF, van Balkom BW, Yazdanbakhsh M, Shoemaker CB et al.. Functions of the tegument of schistosomes: clues from the proteome and lipidome. Int J Parasitol. 2006; 36:691-9.
  • [6]Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature. 1998; 392:245-52.
  • [7]Steinman RM. Dendritic cells. In: Fundamental Immunolog . 4th ed. Paul WE, editor. Lippincott-Raven Publishers, Philadelphia, PA; 1991: p.547-573.
  • [8]Kanan JHC, Chain BM. Modulation of dendritic cell differentiation and cytokine secretion by the hydatid cyst fluid of Echinococcus granulosus. Immunology. 2006; 118:271-8.
  • [9]Rigano R, Buttari B, Profumo E, Ortona E, Delunardo F, Margutti P et al.. Echinococcus granulosus antigen B impairs human dendritic cell differentiation and polarizes immature dendritic cell maturation towards a Th2 cell response. Infect Immun. 2007; 75:1667-78.
  • [10]Casaravilla C, Pittini A, Ruickerl D, Seoane PI, Jenkins SJ, MacDonald AS et al.. Unconventional maturation of dendritic cells induced by particles from the laminated layer of larval Echinococcus granulosus. Infect Immun. 2014; 82:3164-76.
  • [11]Nono JK, Pletinckx K, Lutz MB, Brehm K. Excretory/secretory-products of Echinococcus multilocularis larvae induce apoptosis and tolerogenic properties in dendritic cells in vitro. PLoS Negl Trop Dis. 2012; 6:e1516.
  • [12]Pan W, Zhou HJ, Shen YJ, Wang Y, Xu YX, Hu Y et al.. Surveillance on the status of immune cells after Echinococcus granulosus protoscoleces infection in Balb/c mice. PLoS ONE. 2013; 8:e59746.
  • [13]Inaba KM, Inaba N, Romani H, Aya H, Dequchi M, Ikehara S et al.. Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/ macrophage colony stimulating factor. J Exp Med. 1992; 176:1693-702.
  • [14]Lutz MB, Kukutsch N, Ogilvie AL, Rossner S, Koch F, Romani N et al.. An advanced culture method for generating large quantities of highly pure dendritic cells from mouse bone marrow. J Immunol Methods. 1999; 223:77-92.
  • [15]Chemale G, van Rossum AJ, Jefferies JR, Barrett J, Brophy PM, Ferreira HB et al.. Proteomic analysis of the larval stage of the parasite Echinococcus granulosus: Causative agent of cystic hydatid disease. Proteomics. 2003; 3:1633-6.
  • [16]Monteiro KM, de Carvalho MO, Zaha A, Ferreira HB. Proteomic analysis of the Echinococcus granulosus metacestode during infection of its intermediate host. Proteomics. 2010; 10:1985-99.
  • [17]Aziz A, Zhang W, Li J, Loukas A, McManus DP, Mulvenna J. Proteomic characterization of Echinococcus granulosus hydatid cyst fluid from sheep, cattle and humans. J Proteomics. 2011; 74:1560-72.
  • [18]Virginio VG, Monteiro KM, Drumond F, de Carvalho MO, Vargas DM, Zaha A et al.. Excretory/secretory products from in vitro-cultured Echinococcus granulosus protoscoleces. Mol Biochem Parasitol. 2012; 183:15-22.
  • [19]Siracusano A, Margutti P, Delunardo F, Profumo E, Rigano R, Buttari B et al.. Molecular cross-talk in host-parasite relationships: the intriguing immunomodulatory role of Echinococcus antigen B in cystic echinococcosis. Inter J Parasitol. 2008; 38:1371-6.
  • [20]Shepherd CS, Kitken A, McManus DP. A protein secreted in vivo by Echinococcus granulosus inhibits elastase activity and neutrophil chemotaxis. Mol Biochem Parasitol. 1991; 44:81-90.
  • [21]Rigano R, Profumo E, Bruschi F, Carulli G, Azzara A, Ioppolo S et al.. Modulation of human immune response by Echinococus granulosus antigen B and its possible role in evading host defenses. Infect Immun. 2001; 69:288-96.
  • [22]Margutti P, Ortona E, Vaccari S, Barca S, Rigano R, Teggi A et al.. Cloning and expression of a cDNA encoding an elongation factor 1β/δ protein from Echinococcus granulosus with immunogenic activity. Parasite Immunol. 1999; 21:485-92.
  • [23]Ortona E, Margutti P, Vaccari S, Rigano R, Profumo E, Buttari B et al.. Elongation factor 1β/δ of Echinococcus granulosus and allergic manifestations in human cystic echinococcosis. Clin Exp Immunol. 2001; 125:110-6.
  • [24]Ortona E, Vaccari S, Margutti P, Delunardo F, Rigano R, Profumo E et al.. Immunological characterization of Echinococcus granulosus cyclophilin, an allergen reactive with IgE and IgG4 from patient with cystic echinococcosis. Clin Exp Immunol. 2002; 128:124-30.
  • [25]Ortona E, Marguitti P, Delunardo F, Vaccari S, Rigano R, Profumo E et al.. Molecular and immunological characterization of the C-terminal region of a new Echinococcus granulosus Heat Shock Protein 70. Parasite Immunol. 2003; 25:119-26.
  • [26]Ortona E, Margutti P, Delunardo F, Nobili V, Profumo E, Rigano R et al.. Screening of an Echinococcus granulosus cDNA library with IgG4 from patient with cystic echinococcosis identifies a new tegumental protein involved in the immune escape. Clin Exp Immunol. 2005; 142:528-38.
  • [27]Delunardo F, Ortona E, Margutti P, Perdicchio M, Vacirca D, Teggi A et al.. Identification of a novel 19 kDa Echinococcus granulosus antigen. Acta Trop. 2010; 113:42-7.
  • [28]Gottstein B, Hemphill A. Echinococcus multilocularis: the parasite-host interplay. Exp Parasitol. 2008; 119:447-52.
  • [29]Balic A, Harcus Y, Holland MJ, Maizels RM. Selective maturation of dendritic cells by Nippostrongylus brasiliensis-secreted proteins drives Th2 immune responses. Eur J Immunol. 2004; 34:3047-59.
  • [30]Thomas PG, Varter MR, Atochina O, Da’Dara AA, Piskorska D, McGuire E et al.. Maturation of dendritic cell 2 phenotype by a helminth glycan uses a Toll-like receptor 4-depandent mechanism. J Immunol. 2003; 171:5837-41.
  • [31]Van der Kleij D, Latz E, Brouwers JF, Kruize YC, Schmitz M, Kurt-Jones EA et al.. Schistosomal lyso-phosphatidylserine activates Toll-like receptor 2 and affects immune polarization. J Biol Chem. 2002; 277:48122-9.
  • [32]MacDonald AS, Straw AD, Bauman B, Pearce EJ. CD8- dendritic cell activation status plays an integral role in influencing Th2 response development. J Immunol. 2001; 167:1982-8.
  • [33]Whelan M, Harnett MM, Houston KM, Patel V, Harnett W, Rigley KP. A filarial nematode-secreted product signals dendritic cells to acquire a phenotype that drives development of Th2 cells. J Immunol. 2000; 164:6453-60.
  • [34]Elliott DE, Setiawan T, Metwali A, Blum A, Urban JF, Weinstock JV. Heligmosomoides polygyrus inhibits established colitis in IL-10-deficient mice. Eur J Immunol. 2004; 34:2690-8.
  • [35]Zhou H, Sun X, Lv Z, Shen Y, Peng H, Yang L et al.. The secretions products from invading cercatiae of S. japonicum (0-3hRP) restrain mouse dendritic cells to mature. Parasitol Res. 2012; 110:119-26.
  • [36]Chen CC, Louie S, McCormick BA, Walker WA, Shi HN. Helminth-primed dendritic cells alter the host response to enteric bacterial infection. J Immunol. 2006; 176:472-83.
  • [37]Smits HH, de Jong EC, Wierenga EA, Kapsenberg ML. Different faces of regulatory DCs in homeostasis and immunity. Trends Immunol. 2005; 26:123-9.
  • [38]Mills KH. Regulatory T cells: friend or foe in immunity to infection? Nat Rev Immunol. 2004; 4:841-55.
  • [39]Hoerauf A, Brattig N. Resistance and susceptibility in human onchocerciasis – beyond Th1 vs Th2. Trends Parasitol. 2002; 18:25-31.
  • [40]Vieira PL, Christensen JR, Minaee S, O’Neill E, Barrat FJ, Boonstra A et al.. IL-10-secreting regulatory T cells do not express Foxp3 but have comparable regulatory function to naturally occurring CD4 + CD25 + regulatory T cells. J Immunol. 2004; 172:5986-93.
  • [41]Segura M, Su Z, Piccirillo C, Stevenson MM. Impairment of dendritic cell function by excretory-secretory products: a potential mechanism for nematode-induced immunosuppression. Eur J Immunol. 2007; 37:1887-904.
  • [42]Barrat FJ, Cua DJ, Boostra A, Richards DF, Crain C, Savelkoul HF et al.. In vitro generation of interleukin 10-producing regulatory CD4 + T cells is induced by immunosuppressive drugs and inhibited by T helper type 1 (Th1)-and Th2-inducing cytokines. J Exp Med. 2002; 195:603-16.
  • [43]Sundstedt A, O’Neill EJ, Nicolson KS, Wraith DC. Role for IL-10 in suppression mediated by peptide-induced regulatory T cells in vivo. J Immunol. 2003; 170:1240-8.
  文献评价指标  
  下载次数:50次 浏览次数:11次