期刊论文详细信息
BMC Microbiology
Differential infection outcome of Chlamydia trachomatis in human blood monocytes and monocyte-derived dendritic cells
Annette D Wagner1  Hermann Haller1  Jessica Thalmann1  Florence Njau1  Baishakhi Datta1 
[1]Department of Nephrology, Hannover Medical School, Hannover, Germany
关键词: Gene expression;    Cytokine;    Dendritic cell;    Monocyte;    Chlamydia trachomatis;   
Others  :  1140585
DOI  :  10.1186/s12866-014-0209-3
 received in 2014-02-10, accepted in 2014-07-21,  发布年份 2014
PDF
【 摘 要 】

Background

Chlamydia trachomatis is an intracellular bacteria which consist of three biovariants; trachoma (serovars A-C), urogenital (serovars D-K) and lymphogranuloma venereum (L1-L3), causing a wide spectrum of disease in humans. Monocytes are considered to disseminate this pathogen throughout the body while dendritic cells (DCs) play an important role in mediating immune response against bacterial infection. To determine the fate of C. trachomatis within human peripheral blood monocytes and monocyte-derived DCs, these two sets of immune cells were infected with serovars Ba, D and L2, representative of the three biovariants of C. trachomatis.

Results

Our study revealed that the different serovars primarily infect monocytes and DCs in a comparable fashion, however undergo differential infection outcome, serovar L2 being the only candidate to inflict active infection. Moreover, the C. trachomatis serovars Ba and D become persistent in monocytes while the serovars predominantly suffer degradation within DCs. Effects of persistence gene Indoleamine 2, 3-dioxygenase (IDO) was not clearly evident in the differential infection outcome. The heightened levels of inflammatory cytokines secreted by the chlamydial infection in DCs compared to monocytes seemed to be instrumental for this consequence. The immune genes induced in monocytes and DCs against chlamydial infection involves a different set of Toll-like receptors, indicating that distinct intracellular signalling pathways are adopted for immune response.

Conclusion

Our results demonstrate that the host pathogen interaction in chlamydia infection is not only serovar specific but manifests cell specific features, inducing separate immune response cascade in monocytes and DCs.

【 授权许可】

   
2014 Datta et al.; licensee BioMed Central Ltd

【 预 览 】
附件列表
Files Size Format View
20150325051203469.pdf 1508KB PDF download
Figure 7. 46KB Image download
Figure 6. 44KB Image download
Figure 5. 36KB Image download
Figure 4. 51KB Image download
Figure 3. 36KB Image download
Figure 2. 68KB Image download
Figure 1. 56KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

【 参考文献 】
  • [1]Wang SP, Grayston JT: Three new serovars of Chlamydia trachomatis: Da, Ia, and L2a. J Infect Dis 1991, 163:403-405.
  • [2]Making progress toward the global elimination of blinding trachoma. Report 10th Meet WHO Alliance Glob Elimin Blind Trach, Geneva; 2006.
  • [3]Bryan CP: trachoma origin. papyrus Ebers Transl, Ger version Bles, London; 1930.
  • [4]Peipert JF: Clinical practice. Genital chlamydial infections. N Engl J Med 2003, 349:2424-2430.
  • [5]Stamm WE: Sexually Transmitted Diseases. McGraw Hill, New York; 1999.
  • [6]Mabey D, Peeling RW: Lymphogranuloma venereum. Sex Transm Infect 2002, 78:90-92.
  • [7]Nieuwenhuis RF, Ossewaarde JM, Götz HM, Dees J, Thio HB, Thomeer MGJ, den Hollander JC, Neumann MHA, van der Meijden WI: Resurgence of lymphogranuloma venereum in Western Europe: an outbreak of Chlamydia trachomatis serovar l2 proctitis in The Netherlands among men who have sex with men. Clin Infect Dis 2004, 39:996-1003.
  • [8]Brunelle BW, Nicholson TL, Stephens RS: Microarray-based genomic surveying of gene polymorphisms in Chlamydia trachomatis. Genome Biol 2004, 5:R42. BioMed Central Full Text
  • [9]Carlson JH, Hughes S, Hogan D, Cieplak G, Sturdevant DE, McClarty G, Caldwell HD, Belland RJ: Polymorphisms in the Chlamydia trachomatis cytotoxin locus associated with ocular and genital isolates. Infect Immun 2004, 72:7063-7072.
  • [10]Read TD, Brunham RC, Shen C, Gill SR, Heidelberg JF, White O, Hickey EK, Peterson J, Utterback T, Berry K, Bass S, Linher K, Weidman J, Khouri H, Craven B, Bowman C, Dodson R, Gwinn M, Nelson W, DeBoy R, Kolonay J, McClarty G, Salzberg SL, Eisen J, Fraser CM: Genome sequences of Chlamydia trachomatis MoPn and Chlamydia pneumoniae AR39. Nucleic Acids Res 2000, 28:1397-1406.
  • [11]Yuan Y, Zhang YX, Watkins NG, Caldwell HD: Nucleotide and deduced amino acid sequences for the four variable domains of the major outer membrane proteins of the 15 Chlamydia trachomatis serovars. Infect Immun 1989, 57:1040-1049.
  • [12]Kuo C, Chen WJ: A mouse model of Chlamydia trachomatis pneumonitis. J Infect Dis 1980, 141:198-202.
  • [13]Ito JI, Lyons JM, Airo-Brown LP: Variation in virulence among oculogenital serovars of Chlamydia trachomatis in experimental genital tract infection. Infect Immun 1990, 58:2021-2023.
  • [14]Carlson JH, Porcella SF, McClarty G, Caldwell HD: Comparative genomic analysis of Chlamydia trachomatis oculotropic and genitotropic strains. Infect Immun 2005, 73:6407-6418.
  • [15]Thomson NR, Holden MTG, Carder C, Lennard N, Lockey SJ, Marsh P, Skipp P, O’Connor CD, Goodhead I, Norbertzcak H, Harris B, Ormond D, Rance R, Quail MA, Parkhill J, Stephens RS, Clarke IN: Chlamydia trachomatis: genome sequence analysis of lymphogranuloma venereum isolates. Genome Res 2008, 18:161-171.
  • [16]Fields KA, Hackstadt T: The chlamydial inclusion: escape from the endocytic pathway. Annu Rev Cell Dev Biol 2002, 18:221-245.
  • [17]Cocchiaro JL, Valdivia RH: New insights into Chlamydia intracellular survival mechanisms. Cell Microbiol 2009, 11:1571-1578.
  • [18]Beagley KW, Huston WM, Hansbro PM, Timms P: Chlamydial infection of immune cells: altered function and implications for disease. Crit Rev Immunol 2009, 29:275-305.
  • [19]Inman RD, Whittum-Hudson JA, Schumacher HR, Hudson AP: Chlamydia and associated arthritis. Curr Opin Rheumatol 2000, 12:254-262.
  • [20]Gérard HC, Krausse-Opatz B, Wang Z, Rudy D, Rao JP, Zeidler H, Schumacher HR, Whittum-Hudson JA, Köhler L, Hudson AP: Expression of Chlamydia trachomatis genes encoding products required for DNA synthesis and cell division during active versus persistent infection. Mol Microbiol 2001, 41:731-741.
  • [21]Patton DL, Kuo CC: Histopathology of Chlamydia trachomatis salpingitis after primary and repeated reinfections in the monkey subcutaneous pocket model. J Reprod Fertil 1989, 85:647-656.
  • [22]Gieffers J, van Zandbergen G, Rupp J, Sayk F, Krüger S, Ehlers S, Solbach W, Maass M: Phagocytes transmit Chlamydia pneumoniae from the lungs to the vasculature. Eur Respir J 2004, 23:506-510.
  • [23]Koehler L, Nettelnbreker E, Hudson AP, Ott N, Gérard HC, Branigan PJ, Schumacher HR, Drommer W, Zeidler H: Ultrastructural and molecular analyses of the persistence of Chlamydia trachomatis (serovar K) in human monocytes. Microb Pathog 1997, 22:133-142.
  • [24]Schmitz E, Nettelnbreker E, Zeidler H, Hammer M, Manor E, Wollenhaupt J: Intracellular persistence of chlamydial major outer-membrane protein, lipopolysaccharide and ribosomal RNA after non-productive infection of human monocytes with Chlamydia trachomatis serovar K. J Med Microbiol 1993, 38:278-285.
  • [25]Mellman I, Steinman RM: Dendritic cells: specialized and regulated antigen processing machines. Cell 2001, 106:255-258.
  • [26]Pulendran B, Palucka K, Banchereau J: Sensing pathogens and tuning immune responses. Science 2001, 293:253-256.
  • [27]Stagg AJ, Elsley WA, Pickett MA, Ward ME, Knight SC: Primary human T-cell responses to the major outer membrane protein of Chlamydia trachomatis. Immunology 1993, 79:1-9.
  • [28]Lu H, Zhong G: Interleukin-12 production is required for chlamydial antigen-pulsed dendritic cells to induce protection against live Chlamydia trachomatis infection. Infect Immun 1999, 67:1763-1769.
  • [29]Ojcius DM, de Alba Bravo Y, Kanellopoulos JM, Hawkins RA, Kelly KA, Rank RG, Dautry-Varsat A: Internalization of Chlamydia by dendritic cells and stimulation of Chlamydia-specific T cells. J Immunol 1998, 160:1297-1303.
  • [30]Matyszak MK, Young JL, Gaston JS: Uptake and processing of Chlamydia trachomatis by human dendritic cells. Eur J Immunol 2002, 32:742-751.
  • [31]Gervassi A, Alderson MR, Suchland R, Maisonneuve JF, Grabstein KH, Probst P: Differential regulation of inflammatory cytokine secretion by human dendritic cells upon Chlamydia trachomatis infection. Infect Immun 2004, 72:7231-7239.
  • [32]Byrne GI, Faubion CL: Inhibition of Chlamydia psittaci in oxidatively active thioglycolate-elicited macrophages: distinction between lymphokine-mediated oxygen-dependent and oxygen-independent macrophage activation. Infect Immun 1983, 40:464-471.
  • [33]Shemer Y, Sarov I: Inhibition of growth of Chlamydia trachomatis by human gamma interferon. Infect Immun 1985, 48:592-596.
  • [34]Njau F, Wittkop U, Rohde M, Haller H, Klos A, Wagner AD: In vitro neutralization of tumor necrosis factor-alpha during Chlamydia pneumoniae infection impairs dendritic cells maturation/function and increases chlamydial progeny. FEMS Immunol Med Microbiol 2009, 55:215-225.
  • [35]Fehlner-Gardiner C, Roshick C, Carlson JH, Hughes S, Belland RJ, Caldwell HD, McClarty G: Molecular basis defining human Chlamydia trachomatis tissue tropism. A possible role for tryptophan synthase. J Biol Chem 2002, 277:26893-26903.
  • [36]Morrison RP: New insights into a persistent problem – chlamydial infections. J Clin Invest 2003, 111:1647-1649.
  • [37]Caldwell HD, Wood H, Crane D, Bailey R, Jones RB, Mabey D, Maclean I, Mohammed Z, Peeling R, Roshick C, Schachter J, Solomon AW, Stamm WE, Suchland RJ, Taylor L, West SK, Quinn TC, Belland RJ, McClarty G: Polymorphisms in Chlamydia trachomatis tryptophan synthase genes differentiate between genital and ocular isolates. J Clin Invest 2003, 111:1757-1769.
  • [38]Thalmann J, Janik K, May M, Sommer K, Ebeling J, Hofmann F, Genth H, Klos A: Actin re-organization induced by Chlamydia trachomatis serovar D–evidence for a critical role of the effector protein CT166 targeting Rac. PLoS One 2010, 5:e9887.
  • [39]Notice of Guidelines for Collection of Blood and Blood Components. Volume 62. Bunndesanzeiger, Bundesministerium der Justiz; 2010.
  • [40]Wittkop U, Peppmueller M, Njau F, Leibold W, Klos A, Krausse-Opatz B, Hudson AP, Zeidler H, Haller H, Wagner AD: Transmission of Chlamydophila pneumoniae from dendritic cells to macrophages does not require cell-to-cell contact in vitro. J Microbiol Methods 2008, 72:288-295.
  • [41]Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods 2001, 25:402-408.
  • [42]Schnitger K, Njau F, Wittkop U, Liese A, Kuipers JG, Thiel A, Morgan MA, Zeidler H, Wagner AD: Staining of Chlamydia trachomatis elementary bodies: a suitable method for identifying infected human monocytes by flow cytometry. J Microbiol Methods 2007, 69:116-121.
  • [43]Beatty WL, Belanger TA, Desai AA, Morrison RP, Byrne GI: Tryptophan depletion as a mechanism of gamma interferon-mediated chlamydial persistence. Infect Immun 1994, 62:3705-3711.
  • [44]Njau F, Geffers R, Thalmann J, Haller H, Wagner AD: Restriction of Chlamydia pneumoniae replication in human dendritic cell by activation of indoleamine 2,3-dioxygenase. Microbes Infect 2009, 11:1002-1010.
  • [45]Dessus-babus S, Darville TL, Cuozzo FP, Ferguson K, Wyrick PB: Differences in innate immune responses ( in vitro ) to HeLa cells infected with nondisseminating serovar E and disseminating serovar L2 of Chlamydia trachomatis. Infect Immun 2002, 70:3234-3248.
  • [46]Grohmann U, Fallarino F, Puccetti P: Tolerance, DCs and tryptophan: much ado about IDO. Trends Immunol 2003, 24:242-248.
  • [47]Akira S, Takeda K: Toll-like receptor signalling. Nat Rev Immunol 2004, 4:499-511.
  • [48]Manor E, Sarov I: Fate of Chlamydia trachomatis in human monocytes and monocyte-derived macrophages. Infect Immun 1986, 54:90-95.
  • [49]Beatty WL, Morrison RP, Byrne GI: Persistent chlamydiae: from cell culture to a paradigm for chlamydial pathogenesis. Microbiol Rev 1994, 58:686-699.
  • [50]Wolf K, Fischer E, Hackstadt T: Degradation of Chlamydia pneumoniae by peripheral blood monocytic cells. Infect Immun 2005, 73:4560-4570.
  • [51]Sommer K, Njau F, Wittkop U, Thalmann J, Bartling G, Wagner A, Klos A: Identification of high- and low-virulent strains of Chlamydia pneumoniae by their characterization in a mouse pneumonia model. FEMS Immunol Med Microbiol 2009, 55:206-214.
  • [52]Medzhitov R, Janeway C: Innate immune recognition: mechanisms and pathways. Immunol Rev 2000, 173:89-97.
  • [53]Hemmi H, Takeuchi O, Kawai T, Kaisho T, Sato S, Sanjo H, Matsumoto M, Hoshino K, Wagner H, Takeda K, Akira S: A Toll-like receptor recognizes bacterial DNA. Nature 2000, 408:740-745.
  • [54]Ozinsky A, Underhill DM, Fontenot JD, Hajjar AM, Smith KD, Wilson CB, Schroeder L, Aderem A: The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between toll-like receptors. Proc Natl Acad Sci USA 2000, 97:13766-13771.
  • [55]Muzio M, Ni J, Feng P, Dixit VM: IRAK (Pelle) family member IRAK-2 and MyD88 as proximal mediators of IL-1 signaling. Science 1997, 278:1612-1615.
  • [56]Kawai T, Adachi O, Ogawa T, Takeda K, Akira S: Unresponsiveness of MyD88-deficient mice to endotoxin. Immunity 1999, 11:115-122.
  • [57]Hoebe K, Du X, Georgel P, Janssen E, Tabeta K, Kim SO, Goode J, Lin P, Mann N, Mudd S, Crozat K, Sovath S, Han J, Beutler B: Identification of Lps2 as a key transducer of MyD88-independent TIR signalling. Nature 2003, 424:743-748.
  • [58]Agrawal T, Bhengraj AR, Vats V, Salhan S, Mittal A: Expression of TLR 2, TLR 4 and iNOS in cervical monocytes of Chlamydia trachomatis-infected women and their role in host immune response. Am J Reprod Immunol 2011, 66:534-543.
  • [59]Darville T, Hiltke TJ: Pathogenesis of genital tract disease due to Chlamydia trachomatis. J Infect Dis 2010, 201(2):S114-S125.
  文献评价指标  
  下载次数:9次 浏览次数:10次