期刊论文详细信息
BMC Microbiology
Lipoproteins of slow-growing Mycobacteria carry three fatty acids and are N-acylated by Apolipoprotein N-Acyltransferase BCG_2070c
Peter Sander1  Andreas Tschumi2  Juliane K Brülle2 
[1] National Reference Laboratory for Mycobacteria (NRLM), Gloriastrasse 30, CH-8006, Zurich, Switzerland;Institute of Medical Microbiology, University of Zurich, Gloriastrasse 30/32, CH-8006, Zurich, Switzerland
关键词: Apolipoprotein N-acyltransferase;    Lipidation;    Lipoprotein;    Tuberculosis;    Mycobacteria;   
Others  :  1142897
DOI  :  10.1186/1471-2180-13-223
 received in 2013-07-10, accepted in 2013-09-30,  发布年份 2013
PDF
【 摘 要 】

Background

Lipoproteins are virulence factors of Mycobacterium tuberculosis. Bacterial lipoproteins are modified by the consecutive action of preprolipoprotein diacylglyceryl transferase (Lgt), prolipoprotein signal peptidase (LspA) and apolipoprotein N- acyltransferase (Lnt) leading to the formation of mature triacylated lipoproteins. Lnt homologues are found in Gram-negative and high GC-rich Gram-positive, but not in low GC-rich Gram-positive bacteria, although N-acylation is observed. In fast-growing Mycobacterium smegmatis, the molecular structure of the lipid modification of lipoproteins was resolved recently as a diacylglyceryl residue carrying ester-bound palmitic acid and ester-bound tuberculostearic acid and an additional amide-bound palmitic acid.

Results

We exploit the vaccine strain Mycobacterium bovis BCG as model organism to investigate lipoprotein modifications in slow-growing mycobacteria. Using Escherichia coli Lnt as a query in BLASTp search, we identified BCG_2070c and BCG_2279c as putative lnt genes in M. bovis BCG. Lipoproteins LprF, LpqH, LpqL and LppX were expressed in M. bovis BCG and BCG_2070c lnt knock-out mutant and lipid modifications were analyzed at molecular level by matrix-assisted laser desorption ionization time-of-flight/time-of-flight analysis. Lipoprotein N-acylation was observed in wildtype but not in BCG_2070c mutants. Lipoprotein N- acylation with palmitoyl and tuberculostearyl residues was observed.

Conclusions

Lipoproteins are triacylated in slow-growing mycobacteria. BCG_2070c encodes a functional Lnt in M. bovis BCG. We identified mycobacteria-specific tuberculostearic acid as further substrate for N-acylation in slow-growing mycobacteria.

【 授权许可】

   
2013 Brülle et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150328184434744.pdf 664KB PDF download
Figure 2. 48KB Image download
Figure 1. 69KB Image download
【 图 表 】

Figure 1.

Figure 2.

【 参考文献 】
  • [1]Sutcliffe IC, Harrington DJ: Lipoproteins of Mycobacterium tuberculosis: an abundant and functionally diverse class of cell envelope components. FEMS Microbiol Rev 2004, 28(5):645-659.
  • [2]Babu MM, Priya ML, Selvan AT, Madera M, Gough J, Aravind L, Sankaran K: A database of bacterial lipoproteins (DOLOP) with functional assignments to predicted lipoproteins. J Bacteriol 2006, 188(8):2761-2773.
  • [3]Kovacs-Simon A, Titball RW, Michell SL: Lipoproteins of bacterial pathogens. Infect Immun 2011, 79(2):548-561.
  • [4]McDonough JA, Hacker KE, Flores AR, Pavelka MS Jr, Braunstein M: The twin-arginine translocation pathway of Mycobacterium smegmatis is functional and required for the export of mycobacterial beta-lactamases. J Bacteriol 2005, 187(22):7667-7679.
  • [5]Sankaran K, Wu HC: Lipid modification of bacterial prolipoprotein. Transfer of diacylglyceryl moiety from phosphatidylglycerol. J Biol Chem 1994, 269(31):19701-19706.
  • [6]Okuda S, Tokuda H: Lipoprotein sorting in bacteria. Annu Rev Microbiol 2011, 65:239-259.
  • [7]Rezwan M, Grau T, Tschumi A, Sander P: Lipoprotein synthesis in mycobacteria. Microbiology 2007, 153(Pt 3):652-658.
  • [8]Yakushi T, Masuda K, Narita S, Matsuyama S, Tokuda H: A new ABC transporter mediating the detachment of lipid-modified proteins from membranes. Nat Cell Biol 2000, 2(4):212-218.
  • [9]Narita S, Tokuda H: Overexpression of LolCDE allows deletion of the Escherichia coli gene encoding apolipoprotein N-acyltransferase. J Bacteriol 2011, 193(18):4832-4840.
  • [10]Wu HC: Biosynthesis of lipoproteins. In Escherichia coli and Salmonella typhimurium: cellular and molecular biology. Washington, DC: American Society for Microbiology: Neidhardt FC, vol. 2, 2nd edn; 1996:1005-1014.
  • [11]Vidal-Ingigliardi D, Lewenza S, Buddelmeijer N: Identification of essential residues in apolipoprotein N-acyl transferase, a member of the CN hydrolase family. J Bacteriol 2007, 189(12):4456-4464.
  • [12]Tschumi A, Nai C, Auchli Y, Hunziker P, Gehrig P, Keller P, Grau T, Sander P: Identification of apolipoprotein N-acyltransferase (Lnt) in mycobacteria. J Biol Chem 2009, 284(40):27146-27156.
  • [13]Brulle JK, Grau T, Tschumi A, Auchli Y, Burri R, Polsfuss S, Keller PM, Hunziker P, Sander P: Cloning, expression and characterization of Mycobacterium tuberculosis lipoprotein LprF. Biochem Biophys Res Commun 2010, 391(1):679-684.
  • [14]Liu CF, Tonini L, Malaga W, Beau M, Stella A, Bouyssie D, Jackson MC, Nigou J, Puzo G, Guilhot C, et al.: Bacterial protein-O-mannosylating enzyme is crucial for virulence of Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 2013, 110(16):6560-6565.
  • [15]Widdick DA, Hicks MG, Thompson BJ, Tschumi A, Chandra G, Sutcliffe IC, Brulle JK, Sander P, Palmer T, Hutchings MI: Dissecting the complete lipoprotein biogenesis pathway in Streptomyces scabies. Mol Microbiol 2011, 80(5):1395-1412.
  • [16]Mohiman N, Argentini M, Batt SM, Cornu D, Masi M, Eggeling L, Besra G, Bayan N: The ppm operon is essential for acylation and glycosylation of lipoproteins in Corynebacterium glutamicum. PLoS One 2012, 7(9):e46225.
  • [17]Hayashi S, Chang SY, Chang S, Giam CZ, Wu HC: Modification and processing of internalized signal sequences of prolipoprotein in Escherichia coli and in Bacillus subtilis. J Biol Chem 1985, 260(9):5753-5759.
  • [18]Kurokawa K, Lee H, Roh KB, Asanuma M, Kim YS, Nakayama H, Shiratsuchi A, Choi Y, Takeuchi O, Kang HJ, et al.: The Triacylated ATP Binding Cluster Transporter Substrate-binding Lipoprotein of Staphylococcus aureus Functions as a Native Ligand for Toll-like Receptor 2. J Biol Chem 2009, 284(13):8406-8411.
  • [19]Tawaratsumida K, Furuyashiki M, Katsumoto M, Fujimoto Y, Fukase K, Suda Y, Hashimoto M: Characterization of N-terminal structure of TLR2-activating lipoprotein in Staphylococcus aureus. J Biol Chem 2009, 284(14):9147-9152.
  • [20]Nakayama H, Kurokawa K, Lee BL: Lipoproteins in bacteria: structures and biosynthetic pathways. Febs J 2012, 279(23):4247-4268.
  • [21]Serebryakova MV, Demina IA, Galyamina MA, Kondratov IG, Ladygina VG, Govorun VM: The acylation state of surface lipoproteins of mollicute Acholeplasma laidlawii. J Biol Chem 2011, 286(26):22769-22776.
  • [22]Kurokawa K, Ryu KH, Ichikawa R, Masuda A, Kim MS, Lee H, Chae JH, Shimizu T, Saitoh T, Kuwano K, et al.: Novel bacterial lipoprotein structures conserved in low-GC content gram-positive bacteria are recognized by Toll-like receptor 2. J Biol Chem 2012, 287(16):13170-13181.
  • [23]Sander P, Rezwan M, Walker B, Rampini SK, Kroppenstedt RM, Ehlers S, Keller C, Keeble JR, Hagemeier M, Colston MJ, et al.: Lipoprotein processing is required for virulence of Mycobacterium tuberculosis. Mol Microbiol 2004, 52(6):1543-1552.
  • [24]Rampini SK, Selchow P, Keller C, Ehlers S, Bottger EC, Sander P: LspA inactivation in Mycobacterium tuberculosis results in attenuation without affecting phagosome maturation arrest. Microbiology 2008, 154(Pt 10):2991-3001.
  • [25]Ray A, Cot M, Puzo G, Gilleron M, Nigou J: Bacterial cell wall macroamphiphiles: pathogen-/microbe-associated molecular patterns detected by mammalian innate immune system. Biochimie 2013, 95(1):33-42.
  • [26]Drage MG, Pecora ND, Hise AG, Febbraio M, Silverstein RL, Golenbock DT, Boom WH, Harding CV: TLR2 and its co-receptors determine responses of macrophages and dendritic cells to lipoproteins of Mycobacterium tuberculosis. Cell Immunol 2009, 258(1):29-37.
  • [27]Harding CV, Boom WH: Regulation of antigen presentation by Mycobacterium tuberculosis: a role for Toll-like receptors. Nat Rev Microbiol 2010, 8(4):296-307.
  • [28]Prados-Rosales R, Baena A, Martinez LR, Luque-Garcia J, Kalscheuer R, Veeraraghavan U, Camara C, Nosanchuk JD, Besra GS, Chen B, et al.: Mycobacteria release active membrane vesicles that modulate immune responses in a TLR2-dependent manner in mice. J Clin Invest 2013, 121(4):1471-1483.
  • [29]Brosch R, Gordon SV, Garnier T, Eiglmeier K, Frigui W, Valenti P, Dos Santos S, Duthoy S, Lacroix C, Garcia-Pelayo C, et al.: Genome plasticity of BCG and impact on vaccine efficacy. Proc Natl Acad Sci U S A 2007, 104(13):5596-5601.
  • [30]Kaufmann SH, Gengenbacher M: Recombinant live vaccine candidates against tuberculosis. Curr Opin Biotechnol 2012, 23(6):900-907.
  • [31]Sander P, Springer B, Bottger EC: Gene Replacement in Mycobacterium tuberculosis and Mycobacterium bovis BCG Using rpsL as a Dominant Negative Selectable Marker. Methods Mol Med 2001, 54:93-104.
  • [32]Sander P, Meier A, Bottger EC: rpsL+: a dominant selectable marker for gene replacement in mycobacteria. Mol Microbiol 1995, 16(5):991-1000.
  • [33]Sander P, Prammananan T, Meier A, Frischkorn K, Bottger EC: The role of ribosomal RNAs in macrolide resistance. Mol Microbiol 1997, 26(3):469-480.
  • [34]Stover CK, de la Cruz VF, Fuerst TR, Burlein JE, Benson LA, Bennett LT, Bansal GP, Young JF, Lee MH, Hatfull GF, et al.: New use of BCG for recombinant vaccines. Nature 1991, 351(6326):456-460.
  • [35]Ujihara T, Sakurai I, Mizusawa N, Wada H: A method for analyzing lipid-modified proteins with mass spectrometry. Anal Biochem 2008, 374(2):429-431.
  • [36]Sulzenbacher G, Canaan S, Bordat Y, Neyrolles O, Stadthagen G, Roig-Zamboni V, Rauzier J, Maurin D, Laval F, Daffe M, et al.: LppX is a lipoprotein required for the translocation of phthiocerol dimycocerosates to the surface of Mycobacterium tuberculosis. Embo J 2006, 25(7):1436-1444.
  • [37]Steyn AJ, Joseph J, Bloom BR: Interaction of the sensor module of Mycobacterium tuberculosis H37Rv KdpD with members of the Lpr family. Mol Microbiol 2003, 47(4):1075-1089.
  • [38]Diaz-Silvestre H, Espinosa-Cueto P, Sanchez-Gonzalez A, Esparza-Ceron MA, Pereira-Suarez AL, Bernal-Fernandez G, Espitia C, Mancilla R: The 19-kDa antigen of Mycobacterium tuberculosis is a major adhesin that binds the mannose receptor of THP-1 monocytic cells and promotes phagocytosis of mycobacteria. Microb Pathog 2005, 39(3):97-107.
  • [39]Goren MB, Brennan PJ: Mycobacterial lipids: chemistry and biological activities. In Tuberculosis. The W. B. Saunders Co., Philadelphia, PA: Youmans GP; 1979:63-193.
  • [40]Gupta SD, Dowhan W, Wu HC: Phosphatidylethanolamine is not essential for the N-acylation of apolipoprotein in Escherichia coli. J Biol Chem 1991, 266(15):9983-9986.
  • [41]Hillmann F, Argentini M, Buddelmeijer N: Kinetics and phospholipid specificity of apolipoprotein N-acyltransferase. J Biol Chem 2011, 286(32):27936-27946.
  • [42]Jackowski S, Rock CO: Transfer of fatty acids from the 1-position of phosphatidylethanolamine to the major outer membrane lipoprotein of Escherichia coli. J Biol Chem 1986, 261(24):11328-11333.
  • [43]Lai JS, Wu HC: Incorporation of acyl moieties of phospholipids into murein lipoprotein in intact cells of Escherichia coli by phospholipid vesicle fusion. J Bacteriol 1980, 144(1):451-453.
  • [44]Lin JJ, Kanazawa H, Wu HC: Assembly of outer membrane lipoprotein in an Escherichia coli mutant with a single amino acid replacement within the signal sequence of prolipoprotein. J Bacteriol 1980, 141(2):550-557.
  • [45]Sartain MJ, Belisle JT: N-Terminal clustering of the O-glycosylation sites in the Mycobacterium tuberculosis lipoprotein SodC. Glycobiology 2009, 19(1):38-51.
  • [46]Garbe T, Harris D, Vordermeier M, Lathigra R, Ivanyi J, Young D: Expression of the Mycobacterium tuberculosis 19-kilodalton antigen in Mycobacterium smegmatis: immunological analysis and evidence of glycosylation. Infect Immun 1993, 61(1):260-267.
  • [47]Buddelmeijer N, Young R: The essential Escherichia coli apolipoprotein N-acyltransferase (Lnt) exists as an extracytoplasmic thioester acyl-enzyme intermediate. Biochemistry 2009, 49(2):341-346.
  • [48]Tschumi A, Grau T, Albrecht D, Rezwan M, Antelmann H, Sander P: Functional analyses of mycobacterial lipoprotein diacylglyceryl transferase and comparative secretome analysis of a mycobacterial lgt mutant. J Bacteriol 2012, 194(15):3938-3949.
  • [49]Ziegenbalg A, Prados-Rosales R, Jenny-Avital ER, Kim RS, Casadevall A, Achkar JM: Immunogenicity of mycobacterial vesicles in humans: Identification of a new tuberculosis antibody biomarker. Tuberculosis (Edinb) 2013.
  • [50]Camacho LR, Ensergueix D, Perez E, Gicquel B, Guilhot C: Identification of a virulence gene cluster of Mycobacterium tuberculosis by signature-tagged transposon mutagenesis. Mol Microbiol 1999, 34(2):257-267.
  • [51]Bigi F, Gioffre A, Klepp L, Santangelo MP, Alito A, Caimi K, Meikle V, Zumarraga M, Taboga O, Romano MI, et al.: The knockout of the lprG-Rv1410 operon produces strong attenuation of Mycobacterium tuberculosis. Microbes Infect 2004, 6(2):182-187.
  • [52]Henao-Tamayo M, Junqueira-Kipnis AP, Ordway D, Gonzales-Juarrero M, Stewart GR, Young DB, Wilkinson RJ, Basaraba RJ, Orme IM: A mutant of Mycobacterium tuberculosis lacking the 19-kDa lipoprotein Rv3763 is highly attenuated in vivo but retains potent vaccinogenic properties. Vaccine 2007, 25(41):7153-7159.
  • [53]Sakthi S, Narayanan S: The lpqS knockout mutant of Mycobacterium tuberculosis is attenuated in Macrophages. Microbiol Res 2013.
  • [54]Gowthaman U, Rai PK, Khan N, Jackson DC, Agrewala JN: Lipidated promiscuous peptides vaccine for tuberculosis-endemic regions. Trends Mol Med 2012, 18(10):607-614.
  • [55]Li Y, Powell DA, Shaffer SA, Rasko DA, Pelletier MR, Leszyk JD, Scott AJ, Masoudi A, Goodlett DR, Wang X, et al.: LPS remodeling is an evolved survival strategy for bacteria. Proc Natl Acad Sci U S A 2012, 109(22):8716-8721.
  • [56]Kurokawa K, Kim MS, Ichikawa R, Ryu KH, Dohmae N, Nakayama H, Lee BL: Environment-mediated accumulation of diacyl lipoproteins over their triacyl counterparts in Staphylococcus aureus. J Bacteriol 2012, 194(13):3299-3306.
  • [57]Okuyama H, Kankura T, Nojima S: Positional distribution of fatty acids in phospholipids from Mycobacteria. J Biochem 1967, 61(6):732-737.
  • [58]Jin MS, Kim SE, Heo JY, Lee ME, Kim HM, Paik SG, Lee H, Lee JO: Crystal structure of the TLR1-TLR2 heterodimer induced by binding of a tri-acylated lipopeptide. Cell 2007, 130(6):1071-1082.
  • [59]Kang JY, Nan X, Jin MS, Youn SJ, Ryu YH, Mah S, Han SH, Lee H, Paik SG, Lee JO: Recognition of lipopeptide patterns by Toll-like receptor 2-Toll-like receptor 6 heterodimer. Immunity 2009, 31(6):873-884.
  • [60]Mayerle J, den Hoed CM, Schurmann C, Stolk L, Homuth G, Peters MJ, Capelle LG, Zimmermann K, Rivadeneira F, Gruska S, et al.: Identification of genetic loci associated with Helicobacter pylori serologic status. Jama 2013, 309(18):1912-1920.
  • [61]Azad AK, Sadee W, Schlesinger LS: Innate immune gene polymorphisms in tuberculosis. Infect Immun 2012, 80(10):3343-3359.
  • [62]Herrmann JL, O'Gaora P, Gallagher A, Thole JE, Young DB: Bacterial glycoproteins: a link between glycosylation and proteolytic cleavage of a 19 kDa antigen from Mycobacterium tuberculosis. Embo J 1996, 15(14):3547-3554.
  • [63]Tjalsma H, van Dijl JM: Proteomics-based consensus prediction of protein retention in a bacterial membrane. Proteomics 2005, 5(17):4472-4482.
  • [64]Zhang YJ, Ioerger TR, Huttenhower C, Long JE, Sassetti CM, Sacchettini JC, Rubin EJ: Global assessment of genomic regions required for growth in Mycobacterium tuberculosis. PLoS Pathog 2012, 8(9):e1002946.
  • [65]Robichon C, Vidal-Ingigliardi D, Pugsley AP: Depletion of apolipoprotein N-acyltransferase causes mislocalization of outer membrane lipoproteins in Escherichia coli. J Biol Chem 2005, 280(2):974-983.
  • [66]Niederweis M, Danilchanka O, Huff J, Hoffmann C, Engelhardt H: Mycobacterial outer membranes: in search of proteins. Trends Microbiol 2010, 18(3):109-116.
  • [67]Sutcliffe IC: A phylum level perspective on bacterial cell envelope architecture. Trends Microbiol 2010, 18(10):464-470.
  • [68]Zuber B, Chami M, Houssin C, Dubochet J, Griffiths G, Daffe M: Direct visualization of the outer membrane of mycobacteria and corynebacteria in their native state. J Bacteriol 2008, 190(16):5672-5680.
  文献评价指标  
  下载次数:7次 浏览次数:16次