期刊论文详细信息
BMC Cancer
Androgen receptor and chemokine receptors 4 and 7 form a signaling axis to regulate CXCL12-dependent cellular motility
Jordy J Hsiao2  Brandon H Ng2  Melinda M Smits2  Jiahui Wang2  Rohini J Jasavala4  Harryl D Martinez2  Jinhee Lee2  Jhullian J Alston2  Hiroaki Misonou3  James S Trimmer1  Michael E Wright2 
[1] Department of Neurobiology, Physiology and Behavior and Department of Physiology and Membrane Biology, University of California Davis, School of Medicine, One Shields Avenue, Davis 95616, California, USA
[2] Department of Molecular Physiology & Biophysics, The University of Iowa, Carver College of Medicine, 51 Newton Road, Iowa City 52242, Iowa, USA
[3] Graduate School of Brain Science, Doshisha University, Kyoto, Japan
[4] Department of Pharmacology, Davis Genome Center, University of California Davis School of Medicine, One Shields Avenue, Davis 95616, California, USA
关键词: Prostate cancer;    Cell motility;    CXCR7;    CXCR4;    Androgen receptor;   
Others  :  1161226
DOI  :  10.1186/s12885-015-1201-5
 received in 2014-09-24, accepted in 2015-03-17,  发布年份 2015
PDF
【 摘 要 】

Background

Identifying cellular signaling pathways that become corrupted in the presence of androgens that increase the metastatic potential of organ-confined tumor cells is critical to devising strategies capable of attenuating the metastatic progression of hormone-naïve, organ-confined tumors. In localized prostate cancers, gene fusions that place ETS-family transcription factors under the control of androgens drive gene expression programs that increase the invasiveness of organ-confined tumor cells. C-X-C chemokine receptor type 4 (CXCR4) is a downstream target of ERG, whose upregulation in prostate-tumor cells contributes to their migration from the prostate gland. Recent evidence suggests that CXCR4-mediated proliferation and metastasis of tumor cells is regulated by CXCR7 through its scavenging of chemokine CXCL12. However, the role of androgens in regulating CXCR4-mediated motility with respect to CXCR7 function in prostate-cancer cells remains unclear.

Methods

Immunocytochemistry, western blot, and affinity-purification analyses were used to study how androgens influenced the expression, subcellular localization, and function of CXCR7, CXCR4, and androgen receptor (AR) in LNCaP prostate-tumor cells. Moreover, luciferase assays and quantitative polymerase chain reaction (qPCR) were used to study how chemokines CXCL11 and CXCL12 regulate androgen-regulated genes (ARGs) in LNCaP prostate-tumor cells. Lastly, cell motility assays were carried out to determine how androgens influenced CXCR4-dependent motility through CXCL12.

Results

Here we show that, in the LNCaP prostate-tumor cell line, androgens coordinate the expression of CXCR4 and CXCR7, thereby promoting CXCL12/CXCR4-mediated cell motility. RNA interference experiments revealed functional interactions between AR and CXCR7 in these cells. Co-localization and affinity-purification experiments support a physical interaction between AR and CXCR7 in LNCaP cells. Unexpectedly, CXCR7 resided in the nuclear compartment and modulated AR-mediated transcription. Moreover, androgen-mediated cell motility correlated positively with the co-localization of CXCR4 and CXCR7 receptors, suggesting that cell migration may be linked to functional CXCR4/CXCR7 heterodimers. Lastly, CXCL12-mediated cell motility was CXCR7-dependent, with CXCR7 expression required for optimal expression of CXCR4 protein.

Conclusions

Overall, our results suggest that inhibition of CXCR7 function might decrease the metastatic potential of organ-confined prostate cancers.

【 授权许可】

   
2015 Hsiao et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150413014557714.pdf 2054KB PDF download
Figure 9. 99KB Image download
Figure 8. 46KB Image download
Figure 7. 110KB Image download
Figure 6. 97KB Image download
Figure 5. 58KB Image download
Figure 4. 51KB Image download
Figure 3. 65KB Image download
Figure 2. 68KB Image download
Figure 1. 61KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

【 参考文献 】
  • [1]Siegel R, Naishadham D, Jemal A: Cancer statistics, 2012. CA Cancer J Clin 2012, 62:10-29.
  • [2]Klotz L: Cancer overdiagnosis and overtreatment. Curr Opin Urol 2012, 22:203-9.
  • [3]Tomlins SA, Rhodes DR, Perner S, Dhanasekaran SM, Mehra R, Sun XW, et al.: Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Sci (New York, NY) 2005, 310:644-8.
  • [4]Carver BS, Tran J, Chen Z, Carracedo-Perez A, Alimonti A, Nardella C, et al.: ETS rearrangements and prostate cancer initiation. Nature 2009, 457:E1-discussion E2-3.
  • [5]Carver BS, Tran J, Gopalan A, Chen Z, Shaikh S, Carracedo A, et al.: Aberrant ERG expression cooperates with loss of PTEN to promote cancer progression in the prostate. Nat Genet 2009, 41:619-24.
  • [6]Baena E, Shao Z, Linn DE, Glass K, Hamblen MJ, Fujiwara Y, et al.: ETV1 directs androgen metabolism and confers aggressive prostate cancer in targeted mice and patients. Genes Dev 2013, 27:683-98.
  • [7]Chen Y, Chi P, Rockowitz S, Iaquinta PJ, Shamu T, Shukla S, et al.: ETS factors reprogram the androgen receptor cistrome and prime prostate tumorigenesis in response to PTEN loss. Nat Med 2013, 19:1023-9.
  • [8]Cai J, Kandagatla P, Singareddy R, Kropinski A, Sheng S, Cher ML, et al.: Androgens induce functional CXCR4 through ERG factor expression in TMPRSS2-ERG fusion-positive prostate cancer cells. Transl Oncol 2010, 3:195-203.
  • [9]Ma Q, Jones D, Borghesani PR, Segal RA, Nagasawa T, Kishimoto T, et al.: Impaired B-lymphopoiesis, myelopoiesis, and derailed cerebellar neuron migration in CXCR4- and SDF-1-deficient mice. Proc Natl Acad Sci U S A 1998, 95:9448-53.
  • [10]Zou YR, Kottmann AH, Kuroda M, Taniuchi I, Littman DR: Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature 1998, 393:595-9.
  • [11]Tachibana K, Hirota S, Iizasa H, Yoshida H, Kawabata K, Kataoka Y, et al.: The chemokine receptor CXCR4 is essential for vascularization of the gastrointestinal tract. Nature 1998, 393:591-4.
  • [12]Aiuti A, Tavian M, Cipponi A, Ficara F, Zappone E, Hoxie J, et al.: Expression of CXCR4, the receptor for stromal cell-derived factor-1 on fetal and adult human lympho-hematopoietic progenitors. Eur J Immunol 1999, 29:1823-31.
  • [13]Peled A, Petit I, Kollet O, Magid M, Ponomaryov T, Byk T, et al.: Dependence of human stem cell engraftment and repopulation of NOD/SCID mice on CXCR4. Science 1999, 283:845-8.
  • [14]Taichman RS, Cooper C, Keller ET, Pienta KJ, Taichman NS, McCauley LK: Use of the stromal cell-derived factor-1/CXCR4 pathway in prostate cancer metastasis to bone. Cancer Res 2002, 62:1832-7.
  • [15]Jung Y, Wang J, Schneider A, Sun YX, Koh-Paige AJ, Osman NI, et al.: Regulation of SDF-1 (CXCL12) production by osteoblasts; a possible mechanism for stem cell homing. Bone 2006, 38:497-508.
  • [16]Sanchez-Martin L, Sanchez-Mateos P, Cabanas C: CXCR7 impact on CXCL12 biology and disease. Trends Mol Med 2013, 19:12-22.
  • [17]Sierro F, Biben C, Martinez-Munoz L, Mellado M, Ransohoff RM, Li M, et al.: Disrupted cardiac development but normal hematopoiesis in mice deficient in the second CXCL12/SDF-1 receptor, CXCR7. Proc Natl Acad Sci U S A 2007, 104:14759-64.
  • [18]Levoye A, Balabanian K, Baleux F, Bachelerie F, Lagane B: CXCR7 heterodimerizes with CXCR4 and regulates CXCL12-mediated G protein signaling. Blood 2009, 113:6085-93.
  • [19]Rajagopal S, Kim J, Ahn S, Craig S, Lam CM, Gerard NP, et al.: Beta-arrestin- but not G protein-mediated signaling by the “decoy” receptor CXCR7. Proc Natl Acad Sci U S A 2010, 107:628-32.
  • [20]Ponomaryov T, Peled A, Petit I, Taichman RS, Habler L, Sandbank J, et al.: Induction of the chemokine stromal-derived factor-1 following DNA damage improves human stem cell function. J Clin Invest 2000, 106:1331-9.
  • [21]Sun YX, Wang J, Shelburne CE, Lopatin DE, Chinnaiyan AM, Rubin MA, et al.: Expression of CXCR4 and CXCL12 (SDF-1) in human prostate cancers (PCa) in vivo. J Cell Biochem 2003, 89:462-73.
  • [22]Wang J, Wang J, Dai J, Jung Y, Wei CL, Wang Y, et al.: A glycolytic mechanism regulating an angiogenic switch in prostate cancer. Cancer Res 2007, 67:149-59.
  • [23]Sun YX, Schneider A, Jung Y, Wang J, Dai J, Wang J, et al.: Skeletal localization and neutralization of the SDF-1 (CXCL12)/CXCR4 axis blocks prostate cancer metastasis and growth in osseous sites in vivo. J Bone Miner Res 2005, 20:318-29.
  • [24]Vaday GG, Hua SB, Peehl DM, Pauling MH, Lin YH, Zhu L, et al.: CXCR4 and CXCL12 (SDF-1) in prostate cancer: inhibitory effects of human single chain Fv antibodies. Clin Cancer Res 2004, 10:5630-9.
  • [25]Frigo DE, Sherk AB, Wittmann BM, Norris JD, Wang Q, Joseph JD, et al.: Induction of Kruppel-like factor 5 expression by androgens results in increased CXCR4-dependent migration of prostate cancer cells in vitro. Mol Endocrinol 2009, 23:1385-96.
  • [26]Bolton EC, So AY, Chaivorapol C, Haqq CM, Li H, Yamamoto KR: Cell- and gene-specific regulation of primary target genes by the androgen receptor. Genes Dev 2007, 21:2005-17.
  • [27]Nelson PS, Clegg N, Arnold H, Ferguson C, Bonham M, White J, et al.: The program of androgen-responsive genes in neoplastic prostate epithelium. Proc Natl Acad Sci U S A 2002, 99:11890-5.
  • [28]DePrimo SE, Diehn M, Nelson JB, Reiter RE, Matese J, Fero M, Tibshirani R, Brown PO, Brooks JD: Transcriptional programs activated by exposure of human prostate cancer cells to androgen. Genome Biol 2002, 3:RESEARCH0032. BioMed Central Full Text
  • [29]Yu YP, Landsittel D, Jing L, Nelson J, Ren B, Liu L, et al.: Gene expression alterations in prostate cancer predicting tumor aggression and preceding development of malignancy. J Clin Oncol 2004, 22:2790-9.
  • [30]Wallace TA, Prueitt RL, Yi M, Howe TM, Gillespie JW, Yfantis HG, et al.: Tumor immunobiological differences in prostate cancer between African-American and European-American men. Cancer Res 2008, 68:927-36.
  • [31]Gomella LG: Effective testosterone suppression for prostate cancer: is there a best castration therapy? Rev Urol 2009, 11:52-60.
  • [32]Welsh JB, Sapinoso LM, Su AI, Kern SG, Wang-Rodriguez J, Moskaluk CA, et al.: Analysis of gene expression identifies candidate markers and pharmacological targets in prostate cancer. Cancer Res 2001, 61:5974-8.
  • [33]LaTulippe E, Satagopan J, Smith A, Scher H, Scardino P, Reuter V, et al.: Comprehensive gene expression analysis of prostate cancer reveals distinct transcriptional programs associated with metastatic disease. Cancer Res 2002, 62:4499-506.
  • [34]Luo JH, Yu YP, Cieply K, Lin F, Deflavia P, Dhir R, et al.: Gene expression analysis of prostate cancers. Mol Carcinog 2002, 33:25-35.
  • [35]Liu P, Ramachandran S, Ali Seyed M, Scharer CD, Laycock N, Dalton WB, et al.: Sex-determining region Y box 4 is a transforming oncogene in human prostate cancer cells. Cancer Res 2006, 66:4011-9.
  • [36]Harlow E, Lane D: Using antibodies : a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.; 1999.
  • [37]Luker KE, Lewin SA, Mihalko LA, Schmidt BT, Winkler JS, Coggins NL, et al.: Scavenging of CXCL12 by CXCR7 promotes tumor growth and metastasis of CXCR4-positive breast cancer cells. Oncogene 2012, 31:4750-8.
  • [38]Dambly-Chaudiere C, Cubedo N, Ghysen A: Control of cell migration in the development of the posterior lateral line: antagonistic interactions between the chemokine receptors CXCR4 and CXCR7/RDC1. BMC Dev Biol 2007, 7:23. BioMed Central Full Text
  • [39]Valentin G, Haas P, Gilmour D: The chemokine SDF1a coordinates tissue migration through the spatially restricted activation of Cxcr7 and Cxcr4b. Curr Biol 2007, 17:1026-31.
  • [40]Wright ME, Eng J, Sherman J, Hockenbery DM, Nelson PS, Galitski T, et al.: Identification of androgen-coregulated protein networks from the microsomes of human prostate cancer cells. Genome Biol 2003, 5:R4. BioMed Central Full Text
  • [41]Wang J, Shiozawa Y, Wang J, Wang Y, Jung Y, Pienta KJ, et al.: The role of CXCR7/RDC1 as a chemokine receptor for CXCL12/SDF-1 in prostate cancer. J Biol Chem 2008, 283:4283-94.
  • [42]Keefe AD, Wilson DS, Seelig B, Szostak JW: One-step purification of recombinant proteins using a nanomolar-affinity streptavidin-binding peptide, the SBP-Tag. Protein Expr Purif 2001, 23:440-6.
  • [43]Burns JM, Summers BC, Wang Y, Melikian A, Berahovich R, Miao Z, et al.: A novel chemokine receptor for SDF-1 and I-TAC involved in cell survival, cell adhesion, and tumor development. J Exp Med 2006, 203:2201-13.
  • [44]Eva C, Sprengel R: A novel putative G protein-coupled receptor highly expressed in lung and testis. DNA Cell Biol 1993, 12:393-9.
  • [45]Tripathi V, Verma R, Dinda A, Malhotra N, Kaur J, Luthra K: Differential expression of RDC1/CXCR7 in the human placenta. J Clin Immunol 2009, 29:379-86.
  • [46]Luker KE, Gupta M, Steele JM, Foerster BR, Luker GD: Imaging ligand-dependent activation of CXCR7. Neoplasia 2009, 11:1022-35.
  • [47]Romanuik T, Wang G, Holt R, Jones S, Marra M, Sadar M: Identification of novel androgen-responsive genes by sequencing of LongSAGE libraries. BMC Genomics 2009, 10:476. BioMed Central Full Text
  • [48]Luker KE, Gupta M, Luker GD: Imaging chemokine receptor dimerization with firefly luciferase complementation. FASEB J 2009, 23:823-34.
  • [49]Decaillot FM, Kazmi MA, Lin Y, Ray-Saha S, Sakmar TP, Sachdev P: CXCR7/CXCR4 heterodimer constitutively recruits beta-arrestin to enhance cell migration. J Biol Chem 2011, 286:32188-97.
  • [50]Drury LJ, Ziarek JJ, Gravel S, Veldkamp CT, Takekoshi T, Hwang ST, et al.: Monomeric and dimeric CXCL12 inhibit metastasis through distinct CXCR4 interactions and signaling pathways. Proc Natl Acad Sci 2011, 108:17655-60.
  • [51]Kasina S, Macoska JA: The CXCL12/CXCR4 axis promotes ligand-independent activation of the androgen receptor. Mol Cell Endocrinol 2012, 351:249-63.
  • [52]Perez-Perez JM, Candela H, Micol JL: Understanding synergy in genetic interactions. Trends Genet 2009, 25:368-76.
  • [53]Jasavala R, Martinez H, Thumar J, Andaya A, Gingras AC, Eng JK, et al.: Identification of putative androgen receptor interaction protein modules: cytoskeleton and endosomes modulate androgen receptor signaling in prostate cancer cells. Mol Cell Proteomics 2007, 6:252-71.
  • [54]Lamont KR, Tindall DJ: Androgen regulation of gene expression. Adv Cancer Res 2010, 107:137-62.
  • [55]Sanchez-Alcaniz JA, Haege S, Mueller W, Pla R, Mackay F, Schulz S, et al.: Cxcr7 controls neuronal migration by regulating chemokine responsiveness. Neuron 2011, 69:77-90.
  • [56]Wang Y, Li G, Stanco A, Long JE, Crawford D, Potter GB, et al.: CXCR4 and CXCR7 have distinct functions in regulating interneuron migration. Neuron 2011, 69:61-76.
  • [57]Kerdivel G, Boudot A, Pakdel F: Estrogen represses CXCR7 gene expression by inhibiting the recruitment of NFkappaB transcription factor at the CXCR7 promoter in breast cancer cells. Biochem Biophys Res Commun 2013, 431:729-33.
  • [58]Boudot A, Kerdivel G, Habauzit D, Eeckhoute J, Le Dily F, Flouriot G, et al.: Differential estrogen-regulation of CXCL12 chemokine receptors, CXCR4 and CXCR7, contributes to the growth effect of estrogens in breast cancer cells. PLoS One 2011, 6:e20898.
  • [59]Langeler EG, Van Uffelen CJC, Blankenstein MA, Van Steenbrugge GJ, Mulder E: Effect of culture conditions on androgen sensitivity of the human prostatic cancer cell line LNCaP. Prostate 1993, 23:213-23.
  • [60]Kokontis JM, Hay N, Liao S: Progression of LNCaP prostate tumor cells during androgen deprivation: hormone-independent growth, repression of proliferation by androgen, and role for p27Kip1 in androgen-induced cell cycle arrest. Mol Endocrinol 1998, 12:941-53.
  • [61]de Launoit Y, Veilleux R, Dufour M, Simard J, Labrie F: Characteristics of the Biphasic Action of Androgens and of the Potent Antiproliferative Effects of the New Pure Antiestrogen EM-139 on Cell Cycle Kinetic Parameters in LNCaP Human Prostatic Cancer Cells. Cancer Res 1991, 51:5165-70.
  • [62]Chabot DJ, Chen H, Dimitrov DS, Broder CC: N-Linked Glycosylation of CXCR4 Masks Coreceptor Function for CCR5-Dependent Human Immunodeficiency Virus Type 1 Isolates. J Virol 2000, 74:4404-13.
  • [63]Canals M, Scholten DJ, de Munnik S, Han MK, Smit MJ, Leurs R: Ubiquitination of CXCR7 controls receptor trafficking. PLoS One 2012, 7:e34192.
  • [64]Hoffmann F, Mueller W, Schuetz D, Penfold ME, Wong YH, Schulz S, Stumm R: Rapid uptake and degradation of CXCL12 depend on CXCR7 carboxyl-terminal Serine/Threonine residues. J Biol Chem 2012, 287:28362-77.
  • [65]Sun Y, Cheng Z, Ma L, Pei G: Beta-arrestin2 is critically involved in CXCR4-mediated chemotaxis, and this is mediated by its enhancement of p38 MAPK activation. J Biol Chem 2002, 277:49212-9.
  • [66]Cheng Z-J, Zhao J, Sun Y, Hu W, Wu Y-L, Cen B, et al.: β-arrestin differentially regulates the chemokine receptor CXCR4-mediated signaling and receptor internalization, and this implicates multiple interaction sites between β-arrestin and CXCR4. J Biol Chem 2000, 275:2479-85.
  • [67]Boivin B, Lavoie C, Vaniotis G, Baragli A, Villeneuve L-R, Ethier N, et al.: Functional β-adrenergic receptor signalling on nuclear membranes in adult rat and mouse ventricular cardiomyocytes. Cardiovasc Res 2006, 71:69-78.
  • [68]Re M, Pampillo M, Savard M, Dubuc C, McArdle CA, Millar RP, et al.: The human gonadotropin releasing hormone type I receptor is a functional intracellular GPCR expressed on the nuclear membrane. PLoS One 2010, 5:e11489.
  • [69]Vaniotis G, Del Duca D, Trieu P, Rohlicek CV, Hébert TE, Allen BG: Nuclear β-adrenergic receptors modulate gene expression in adult rat heart. Cell Signal 2011, 23:89-98.
  • [70]Don-Salu-Hewage AS, Chan SY, McAndrews KM, Chetram MA, Dawson MR, Bethea DA, et al.: Cysteine (C)-x-C receptor 4 undergoes transportin 1-dependent nuclear localization and remains functional at the nucleus of metastatic prostate cancer cells. PLoS One 2013, 8:e57194.
  • [71]Lui PP, Kong SK, Kwok TT, Lee CY: The nucleus of HeLa cell contains tubular structures for Ca2+ signalling. Biochem Biophys Res Commun 1998, 247:88-93.
  • [72]Bootman MD, Fearnley C, Smyrnias I, MacDonald F, Roderick HL: An update on nuclear calcium signalling. J Cell Sci 2009, 122:2337-50.
  • [73]Malhas A, Goulbourne C, Vaux DJ: The nucleoplasmic reticulum: form and function. Trends Cell Biol 2011, 21:362-73.
  • [74]Lakshmikanthan V, Zou L, Kim JI, Michal A, Nie Z, Messias NC, et al.: Identification of betaArrestin2 as a corepressor of androgen receptor signaling in prostate cancer. Proc Natl Acad Sci U S A 2009, 106:9379-84.
  • [75]Zabel BA, Wang Y, Lewen S, Berahovich RD, Penfold ME, Zhang P, et al.: Elucidation of CXCR7-mediated signaling events and inhibition of CXCR4-mediated tumor cell transendothelial migration by CXCR7 ligands. J Immunol 2009, 183:3204-11.
  • [76]Martienssen R, Irish V: Copying out our ABCs: the role of gene redundancy in interpreting genetic hierarchies. Trends Genet 1999, 15:435-7.
  • [77]Echevarria W, Leite MF, Guerra MT, Zipfel WR, Nathanson MH: Regulation of calcium signals in the nucleus by a nucleoplasmic reticulum. Nat Cell Biol 2003, 5:440-6.
  文献评价指标  
  下载次数:86次 浏览次数:14次