BMC Cancer | |
Androgen receptor and chemokine receptors 4 and 7 form a signaling axis to regulate CXCL12-dependent cellular motility | |
Jordy J Hsiao2  Brandon H Ng2  Melinda M Smits2  Jiahui Wang2  Rohini J Jasavala4  Harryl D Martinez2  Jinhee Lee2  Jhullian J Alston2  Hiroaki Misonou3  James S Trimmer1  Michael E Wright2  | |
[1] Department of Neurobiology, Physiology and Behavior and Department of Physiology and Membrane Biology, University of California Davis, School of Medicine, One Shields Avenue, Davis 95616, California, USA | |
[2] Department of Molecular Physiology & Biophysics, The University of Iowa, Carver College of Medicine, 51 Newton Road, Iowa City 52242, Iowa, USA | |
[3] Graduate School of Brain Science, Doshisha University, Kyoto, Japan | |
[4] Department of Pharmacology, Davis Genome Center, University of California Davis School of Medicine, One Shields Avenue, Davis 95616, California, USA | |
关键词: Prostate cancer; Cell motility; CXCR7; CXCR4; Androgen receptor; | |
Others : 1161226 DOI : 10.1186/s12885-015-1201-5 |
|
received in 2014-09-24, accepted in 2015-03-17, 发布年份 2015 | |
【 摘 要 】
Background
Identifying cellular signaling pathways that become corrupted in the presence of androgens that increase the metastatic potential of organ-confined tumor cells is critical to devising strategies capable of attenuating the metastatic progression of hormone-naïve, organ-confined tumors. In localized prostate cancers, gene fusions that place ETS-family transcription factors under the control of androgens drive gene expression programs that increase the invasiveness of organ-confined tumor cells. C-X-C chemokine receptor type 4 (CXCR4) is a downstream target of ERG, whose upregulation in prostate-tumor cells contributes to their migration from the prostate gland. Recent evidence suggests that CXCR4-mediated proliferation and metastasis of tumor cells is regulated by CXCR7 through its scavenging of chemokine CXCL12. However, the role of androgens in regulating CXCR4-mediated motility with respect to CXCR7 function in prostate-cancer cells remains unclear.
Methods
Immunocytochemistry, western blot, and affinity-purification analyses were used to study how androgens influenced the expression, subcellular localization, and function of CXCR7, CXCR4, and androgen receptor (AR) in LNCaP prostate-tumor cells. Moreover, luciferase assays and quantitative polymerase chain reaction (qPCR) were used to study how chemokines CXCL11 and CXCL12 regulate androgen-regulated genes (ARGs) in LNCaP prostate-tumor cells. Lastly, cell motility assays were carried out to determine how androgens influenced CXCR4-dependent motility through CXCL12.
Results
Here we show that, in the LNCaP prostate-tumor cell line, androgens coordinate the expression of CXCR4 and CXCR7, thereby promoting CXCL12/CXCR4-mediated cell motility. RNA interference experiments revealed functional interactions between AR and CXCR7 in these cells. Co-localization and affinity-purification experiments support a physical interaction between AR and CXCR7 in LNCaP cells. Unexpectedly, CXCR7 resided in the nuclear compartment and modulated AR-mediated transcription. Moreover, androgen-mediated cell motility correlated positively with the co-localization of CXCR4 and CXCR7 receptors, suggesting that cell migration may be linked to functional CXCR4/CXCR7 heterodimers. Lastly, CXCL12-mediated cell motility was CXCR7-dependent, with CXCR7 expression required for optimal expression of CXCR4 protein.
Conclusions
Overall, our results suggest that inhibition of CXCR7 function might decrease the metastatic potential of organ-confined prostate cancers.
【 授权许可】
2015 Hsiao et al.; licensee BioMed Central.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150413014557714.pdf | 2054KB | download | |
Figure 9. | 99KB | Image | download |
Figure 8. | 46KB | Image | download |
Figure 7. | 110KB | Image | download |
Figure 6. | 97KB | Image | download |
Figure 5. | 58KB | Image | download |
Figure 4. | 51KB | Image | download |
Figure 3. | 65KB | Image | download |
Figure 2. | 68KB | Image | download |
Figure 1. | 61KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
【 参考文献 】
- [1]Siegel R, Naishadham D, Jemal A: Cancer statistics, 2012. CA Cancer J Clin 2012, 62:10-29.
- [2]Klotz L: Cancer overdiagnosis and overtreatment. Curr Opin Urol 2012, 22:203-9.
- [3]Tomlins SA, Rhodes DR, Perner S, Dhanasekaran SM, Mehra R, Sun XW, et al.: Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Sci (New York, NY) 2005, 310:644-8.
- [4]Carver BS, Tran J, Chen Z, Carracedo-Perez A, Alimonti A, Nardella C, et al.: ETS rearrangements and prostate cancer initiation. Nature 2009, 457:E1-discussion E2-3.
- [5]Carver BS, Tran J, Gopalan A, Chen Z, Shaikh S, Carracedo A, et al.: Aberrant ERG expression cooperates with loss of PTEN to promote cancer progression in the prostate. Nat Genet 2009, 41:619-24.
- [6]Baena E, Shao Z, Linn DE, Glass K, Hamblen MJ, Fujiwara Y, et al.: ETV1 directs androgen metabolism and confers aggressive prostate cancer in targeted mice and patients. Genes Dev 2013, 27:683-98.
- [7]Chen Y, Chi P, Rockowitz S, Iaquinta PJ, Shamu T, Shukla S, et al.: ETS factors reprogram the androgen receptor cistrome and prime prostate tumorigenesis in response to PTEN loss. Nat Med 2013, 19:1023-9.
- [8]Cai J, Kandagatla P, Singareddy R, Kropinski A, Sheng S, Cher ML, et al.: Androgens induce functional CXCR4 through ERG factor expression in TMPRSS2-ERG fusion-positive prostate cancer cells. Transl Oncol 2010, 3:195-203.
- [9]Ma Q, Jones D, Borghesani PR, Segal RA, Nagasawa T, Kishimoto T, et al.: Impaired B-lymphopoiesis, myelopoiesis, and derailed cerebellar neuron migration in CXCR4- and SDF-1-deficient mice. Proc Natl Acad Sci U S A 1998, 95:9448-53.
- [10]Zou YR, Kottmann AH, Kuroda M, Taniuchi I, Littman DR: Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature 1998, 393:595-9.
- [11]Tachibana K, Hirota S, Iizasa H, Yoshida H, Kawabata K, Kataoka Y, et al.: The chemokine receptor CXCR4 is essential for vascularization of the gastrointestinal tract. Nature 1998, 393:591-4.
- [12]Aiuti A, Tavian M, Cipponi A, Ficara F, Zappone E, Hoxie J, et al.: Expression of CXCR4, the receptor for stromal cell-derived factor-1 on fetal and adult human lympho-hematopoietic progenitors. Eur J Immunol 1999, 29:1823-31.
- [13]Peled A, Petit I, Kollet O, Magid M, Ponomaryov T, Byk T, et al.: Dependence of human stem cell engraftment and repopulation of NOD/SCID mice on CXCR4. Science 1999, 283:845-8.
- [14]Taichman RS, Cooper C, Keller ET, Pienta KJ, Taichman NS, McCauley LK: Use of the stromal cell-derived factor-1/CXCR4 pathway in prostate cancer metastasis to bone. Cancer Res 2002, 62:1832-7.
- [15]Jung Y, Wang J, Schneider A, Sun YX, Koh-Paige AJ, Osman NI, et al.: Regulation of SDF-1 (CXCL12) production by osteoblasts; a possible mechanism for stem cell homing. Bone 2006, 38:497-508.
- [16]Sanchez-Martin L, Sanchez-Mateos P, Cabanas C: CXCR7 impact on CXCL12 biology and disease. Trends Mol Med 2013, 19:12-22.
- [17]Sierro F, Biben C, Martinez-Munoz L, Mellado M, Ransohoff RM, Li M, et al.: Disrupted cardiac development but normal hematopoiesis in mice deficient in the second CXCL12/SDF-1 receptor, CXCR7. Proc Natl Acad Sci U S A 2007, 104:14759-64.
- [18]Levoye A, Balabanian K, Baleux F, Bachelerie F, Lagane B: CXCR7 heterodimerizes with CXCR4 and regulates CXCL12-mediated G protein signaling. Blood 2009, 113:6085-93.
- [19]Rajagopal S, Kim J, Ahn S, Craig S, Lam CM, Gerard NP, et al.: Beta-arrestin- but not G protein-mediated signaling by the “decoy” receptor CXCR7. Proc Natl Acad Sci U S A 2010, 107:628-32.
- [20]Ponomaryov T, Peled A, Petit I, Taichman RS, Habler L, Sandbank J, et al.: Induction of the chemokine stromal-derived factor-1 following DNA damage improves human stem cell function. J Clin Invest 2000, 106:1331-9.
- [21]Sun YX, Wang J, Shelburne CE, Lopatin DE, Chinnaiyan AM, Rubin MA, et al.: Expression of CXCR4 and CXCL12 (SDF-1) in human prostate cancers (PCa) in vivo. J Cell Biochem 2003, 89:462-73.
- [22]Wang J, Wang J, Dai J, Jung Y, Wei CL, Wang Y, et al.: A glycolytic mechanism regulating an angiogenic switch in prostate cancer. Cancer Res 2007, 67:149-59.
- [23]Sun YX, Schneider A, Jung Y, Wang J, Dai J, Wang J, et al.: Skeletal localization and neutralization of the SDF-1 (CXCL12)/CXCR4 axis blocks prostate cancer metastasis and growth in osseous sites in vivo. J Bone Miner Res 2005, 20:318-29.
- [24]Vaday GG, Hua SB, Peehl DM, Pauling MH, Lin YH, Zhu L, et al.: CXCR4 and CXCL12 (SDF-1) in prostate cancer: inhibitory effects of human single chain Fv antibodies. Clin Cancer Res 2004, 10:5630-9.
- [25]Frigo DE, Sherk AB, Wittmann BM, Norris JD, Wang Q, Joseph JD, et al.: Induction of Kruppel-like factor 5 expression by androgens results in increased CXCR4-dependent migration of prostate cancer cells in vitro. Mol Endocrinol 2009, 23:1385-96.
- [26]Bolton EC, So AY, Chaivorapol C, Haqq CM, Li H, Yamamoto KR: Cell- and gene-specific regulation of primary target genes by the androgen receptor. Genes Dev 2007, 21:2005-17.
- [27]Nelson PS, Clegg N, Arnold H, Ferguson C, Bonham M, White J, et al.: The program of androgen-responsive genes in neoplastic prostate epithelium. Proc Natl Acad Sci U S A 2002, 99:11890-5.
- [28]DePrimo SE, Diehn M, Nelson JB, Reiter RE, Matese J, Fero M, Tibshirani R, Brown PO, Brooks JD: Transcriptional programs activated by exposure of human prostate cancer cells to androgen. Genome Biol 2002, 3:RESEARCH0032. BioMed Central Full Text
- [29]Yu YP, Landsittel D, Jing L, Nelson J, Ren B, Liu L, et al.: Gene expression alterations in prostate cancer predicting tumor aggression and preceding development of malignancy. J Clin Oncol 2004, 22:2790-9.
- [30]Wallace TA, Prueitt RL, Yi M, Howe TM, Gillespie JW, Yfantis HG, et al.: Tumor immunobiological differences in prostate cancer between African-American and European-American men. Cancer Res 2008, 68:927-36.
- [31]Gomella LG: Effective testosterone suppression for prostate cancer: is there a best castration therapy? Rev Urol 2009, 11:52-60.
- [32]Welsh JB, Sapinoso LM, Su AI, Kern SG, Wang-Rodriguez J, Moskaluk CA, et al.: Analysis of gene expression identifies candidate markers and pharmacological targets in prostate cancer. Cancer Res 2001, 61:5974-8.
- [33]LaTulippe E, Satagopan J, Smith A, Scher H, Scardino P, Reuter V, et al.: Comprehensive gene expression analysis of prostate cancer reveals distinct transcriptional programs associated with metastatic disease. Cancer Res 2002, 62:4499-506.
- [34]Luo JH, Yu YP, Cieply K, Lin F, Deflavia P, Dhir R, et al.: Gene expression analysis of prostate cancers. Mol Carcinog 2002, 33:25-35.
- [35]Liu P, Ramachandran S, Ali Seyed M, Scharer CD, Laycock N, Dalton WB, et al.: Sex-determining region Y box 4 is a transforming oncogene in human prostate cancer cells. Cancer Res 2006, 66:4011-9.
- [36]Harlow E, Lane D: Using antibodies : a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.; 1999.
- [37]Luker KE, Lewin SA, Mihalko LA, Schmidt BT, Winkler JS, Coggins NL, et al.: Scavenging of CXCL12 by CXCR7 promotes tumor growth and metastasis of CXCR4-positive breast cancer cells. Oncogene 2012, 31:4750-8.
- [38]Dambly-Chaudiere C, Cubedo N, Ghysen A: Control of cell migration in the development of the posterior lateral line: antagonistic interactions between the chemokine receptors CXCR4 and CXCR7/RDC1. BMC Dev Biol 2007, 7:23. BioMed Central Full Text
- [39]Valentin G, Haas P, Gilmour D: The chemokine SDF1a coordinates tissue migration through the spatially restricted activation of Cxcr7 and Cxcr4b. Curr Biol 2007, 17:1026-31.
- [40]Wright ME, Eng J, Sherman J, Hockenbery DM, Nelson PS, Galitski T, et al.: Identification of androgen-coregulated protein networks from the microsomes of human prostate cancer cells. Genome Biol 2003, 5:R4. BioMed Central Full Text
- [41]Wang J, Shiozawa Y, Wang J, Wang Y, Jung Y, Pienta KJ, et al.: The role of CXCR7/RDC1 as a chemokine receptor for CXCL12/SDF-1 in prostate cancer. J Biol Chem 2008, 283:4283-94.
- [42]Keefe AD, Wilson DS, Seelig B, Szostak JW: One-step purification of recombinant proteins using a nanomolar-affinity streptavidin-binding peptide, the SBP-Tag. Protein Expr Purif 2001, 23:440-6.
- [43]Burns JM, Summers BC, Wang Y, Melikian A, Berahovich R, Miao Z, et al.: A novel chemokine receptor for SDF-1 and I-TAC involved in cell survival, cell adhesion, and tumor development. J Exp Med 2006, 203:2201-13.
- [44]Eva C, Sprengel R: A novel putative G protein-coupled receptor highly expressed in lung and testis. DNA Cell Biol 1993, 12:393-9.
- [45]Tripathi V, Verma R, Dinda A, Malhotra N, Kaur J, Luthra K: Differential expression of RDC1/CXCR7 in the human placenta. J Clin Immunol 2009, 29:379-86.
- [46]Luker KE, Gupta M, Steele JM, Foerster BR, Luker GD: Imaging ligand-dependent activation of CXCR7. Neoplasia 2009, 11:1022-35.
- [47]Romanuik T, Wang G, Holt R, Jones S, Marra M, Sadar M: Identification of novel androgen-responsive genes by sequencing of LongSAGE libraries. BMC Genomics 2009, 10:476. BioMed Central Full Text
- [48]Luker KE, Gupta M, Luker GD: Imaging chemokine receptor dimerization with firefly luciferase complementation. FASEB J 2009, 23:823-34.
- [49]Decaillot FM, Kazmi MA, Lin Y, Ray-Saha S, Sakmar TP, Sachdev P: CXCR7/CXCR4 heterodimer constitutively recruits beta-arrestin to enhance cell migration. J Biol Chem 2011, 286:32188-97.
- [50]Drury LJ, Ziarek JJ, Gravel S, Veldkamp CT, Takekoshi T, Hwang ST, et al.: Monomeric and dimeric CXCL12 inhibit metastasis through distinct CXCR4 interactions and signaling pathways. Proc Natl Acad Sci 2011, 108:17655-60.
- [51]Kasina S, Macoska JA: The CXCL12/CXCR4 axis promotes ligand-independent activation of the androgen receptor. Mol Cell Endocrinol 2012, 351:249-63.
- [52]Perez-Perez JM, Candela H, Micol JL: Understanding synergy in genetic interactions. Trends Genet 2009, 25:368-76.
- [53]Jasavala R, Martinez H, Thumar J, Andaya A, Gingras AC, Eng JK, et al.: Identification of putative androgen receptor interaction protein modules: cytoskeleton and endosomes modulate androgen receptor signaling in prostate cancer cells. Mol Cell Proteomics 2007, 6:252-71.
- [54]Lamont KR, Tindall DJ: Androgen regulation of gene expression. Adv Cancer Res 2010, 107:137-62.
- [55]Sanchez-Alcaniz JA, Haege S, Mueller W, Pla R, Mackay F, Schulz S, et al.: Cxcr7 controls neuronal migration by regulating chemokine responsiveness. Neuron 2011, 69:77-90.
- [56]Wang Y, Li G, Stanco A, Long JE, Crawford D, Potter GB, et al.: CXCR4 and CXCR7 have distinct functions in regulating interneuron migration. Neuron 2011, 69:61-76.
- [57]Kerdivel G, Boudot A, Pakdel F: Estrogen represses CXCR7 gene expression by inhibiting the recruitment of NFkappaB transcription factor at the CXCR7 promoter in breast cancer cells. Biochem Biophys Res Commun 2013, 431:729-33.
- [58]Boudot A, Kerdivel G, Habauzit D, Eeckhoute J, Le Dily F, Flouriot G, et al.: Differential estrogen-regulation of CXCL12 chemokine receptors, CXCR4 and CXCR7, contributes to the growth effect of estrogens in breast cancer cells. PLoS One 2011, 6:e20898.
- [59]Langeler EG, Van Uffelen CJC, Blankenstein MA, Van Steenbrugge GJ, Mulder E: Effect of culture conditions on androgen sensitivity of the human prostatic cancer cell line LNCaP. Prostate 1993, 23:213-23.
- [60]Kokontis JM, Hay N, Liao S: Progression of LNCaP prostate tumor cells during androgen deprivation: hormone-independent growth, repression of proliferation by androgen, and role for p27Kip1 in androgen-induced cell cycle arrest. Mol Endocrinol 1998, 12:941-53.
- [61]de Launoit Y, Veilleux R, Dufour M, Simard J, Labrie F: Characteristics of the Biphasic Action of Androgens and of the Potent Antiproliferative Effects of the New Pure Antiestrogen EM-139 on Cell Cycle Kinetic Parameters in LNCaP Human Prostatic Cancer Cells. Cancer Res 1991, 51:5165-70.
- [62]Chabot DJ, Chen H, Dimitrov DS, Broder CC: N-Linked Glycosylation of CXCR4 Masks Coreceptor Function for CCR5-Dependent Human Immunodeficiency Virus Type 1 Isolates. J Virol 2000, 74:4404-13.
- [63]Canals M, Scholten DJ, de Munnik S, Han MK, Smit MJ, Leurs R: Ubiquitination of CXCR7 controls receptor trafficking. PLoS One 2012, 7:e34192.
- [64]Hoffmann F, Mueller W, Schuetz D, Penfold ME, Wong YH, Schulz S, Stumm R: Rapid uptake and degradation of CXCL12 depend on CXCR7 carboxyl-terminal Serine/Threonine residues. J Biol Chem 2012, 287:28362-77.
- [65]Sun Y, Cheng Z, Ma L, Pei G: Beta-arrestin2 is critically involved in CXCR4-mediated chemotaxis, and this is mediated by its enhancement of p38 MAPK activation. J Biol Chem 2002, 277:49212-9.
- [66]Cheng Z-J, Zhao J, Sun Y, Hu W, Wu Y-L, Cen B, et al.: β-arrestin differentially regulates the chemokine receptor CXCR4-mediated signaling and receptor internalization, and this implicates multiple interaction sites between β-arrestin and CXCR4. J Biol Chem 2000, 275:2479-85.
- [67]Boivin B, Lavoie C, Vaniotis G, Baragli A, Villeneuve L-R, Ethier N, et al.: Functional β-adrenergic receptor signalling on nuclear membranes in adult rat and mouse ventricular cardiomyocytes. Cardiovasc Res 2006, 71:69-78.
- [68]Re M, Pampillo M, Savard M, Dubuc C, McArdle CA, Millar RP, et al.: The human gonadotropin releasing hormone type I receptor is a functional intracellular GPCR expressed on the nuclear membrane. PLoS One 2010, 5:e11489.
- [69]Vaniotis G, Del Duca D, Trieu P, Rohlicek CV, Hébert TE, Allen BG: Nuclear β-adrenergic receptors modulate gene expression in adult rat heart. Cell Signal 2011, 23:89-98.
- [70]Don-Salu-Hewage AS, Chan SY, McAndrews KM, Chetram MA, Dawson MR, Bethea DA, et al.: Cysteine (C)-x-C receptor 4 undergoes transportin 1-dependent nuclear localization and remains functional at the nucleus of metastatic prostate cancer cells. PLoS One 2013, 8:e57194.
- [71]Lui PP, Kong SK, Kwok TT, Lee CY: The nucleus of HeLa cell contains tubular structures for Ca2+ signalling. Biochem Biophys Res Commun 1998, 247:88-93.
- [72]Bootman MD, Fearnley C, Smyrnias I, MacDonald F, Roderick HL: An update on nuclear calcium signalling. J Cell Sci 2009, 122:2337-50.
- [73]Malhas A, Goulbourne C, Vaux DJ: The nucleoplasmic reticulum: form and function. Trends Cell Biol 2011, 21:362-73.
- [74]Lakshmikanthan V, Zou L, Kim JI, Michal A, Nie Z, Messias NC, et al.: Identification of betaArrestin2 as a corepressor of androgen receptor signaling in prostate cancer. Proc Natl Acad Sci U S A 2009, 106:9379-84.
- [75]Zabel BA, Wang Y, Lewen S, Berahovich RD, Penfold ME, Zhang P, et al.: Elucidation of CXCR7-mediated signaling events and inhibition of CXCR4-mediated tumor cell transendothelial migration by CXCR7 ligands. J Immunol 2009, 183:3204-11.
- [76]Martienssen R, Irish V: Copying out our ABCs: the role of gene redundancy in interpreting genetic hierarchies. Trends Genet 1999, 15:435-7.
- [77]Echevarria W, Leite MF, Guerra MT, Zipfel WR, Nathanson MH: Regulation of calcium signals in the nucleus by a nucleoplasmic reticulum. Nat Cell Biol 2003, 5:440-6.