期刊论文详细信息
BMC Genomics
Transcriptome analysis of callus from Picea balfouriana
Junhui Wang1  Shougong Zhang1  Qingfen Li1 
[1] State Key Laboratory of Forest Genetics and Tree Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Number 1 of Dongxiaofu in Haidian District, Beijing, China
关键词: Non-embryogenic tissue;    Embryogenic tissue;    Somatic embryogenesis;    Picea balfouriana;   
Others  :  855533
DOI  :  10.1186/1471-2164-15-553
 received in 2013-07-23, accepted in 2014-06-30,  发布年份 2014
PDF
【 摘 要 】

Background

Picea likiangensis var. balfouriana (Rehd. et Wils.) Hillier ex Slavin (also known as Picea balfouriana) is an ecologically and economically important conifer that grows rapidly under optimum conditions and produces high-quality wood. It has a wide geographic distribution and is prevalent in southwest and eastern regions of China. Under suboptimal conditions, P. balfouriana grows slowly, which restricts its cultivation. Somatic embryogenesis has been used in the mass propagation of commercial species. However, low initiation rates are a common problem and the mechanisms involved in the induction of somatic embryogenesis are not fully understood. To understand the molecular mechanisms regulating somatic embryogenesis in P. balfouriana, high-throughput RNA-seq technology was used to investigate the transcriptomes of embryogenic and non-embryogenic tissues from three P. balfouriana genotypes. We compared the genes expressed in these tissues to identify molecular markers with embryogenic potential.

Results

A total of 55,078,846 nucleotide sequence reads were obtained for the embryogenic and non-embryogenic tissues of P. balfouriana, and 49.56% of them uniquely matched 22,295 (84.3%) of the 26,437 genes in the Picea abies genome database (Nature 497: 579-584, 2013). Differential gene expression analysis identified 1,418 differentially expressed genes (false discovery rate <0.0001; fold change ≥2) in the embryogenic tissues relative to the non-embryogenic tissues, including 431 significantly upregulated and 987 significantly downregulated genes. KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analysis revealed that the most significantly altered genes were involved in plant hormone signal transduction, metabolic pathways (starch and sucrose metabolism), and phenylalanine metabolism.

Conclusions

We found that the initiation of embryogenic tissues affected gene expression in many KEGG pathways, but predominantly in plant hormone signal transduction, plant-pathogen interaction, and starch and sucrose metabolism. The changes in multiple pathways related to induction in the P. balfouriana embryogenic tissues described here, will contribute to a more comprehensive understanding of the mechanisms involved in the initiation of somatic embryogenesis. Additionally, we found that somatic embryogenesis receptor kinase (SERK), arabinogalactan proteins, and members of the WUS-related homeobox protein family may play important roles and could act as molecular markers in the early stage of somatic embryogenesis, as reported previously.

【 授权许可】

   
2014 Li et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140722034641177.pdf 2907KB PDF download
123KB Image download
【 图 表 】

【 参考文献 】
  • [1]Stasolla C, Kong L, Yeung EC, Thorpe TA: Maturation of somatic embryos in conifers: morphogenesis, physiology, biochemistry and molecular biology. In Vitro Cell Dev Biol-Plant 2002, 38:93-105.
  • [2]Schuster SC: Next-generation sequencing transforms today's biology. Nat Methods 2008, 5:16-18.
  • [3]Ansorge WJ: Next generation DNA sequencing techniques. New Biotechnol 2009, 25:195-203.
  • [4]Huang W, Marth G: EagleView: a genome assembly viewer for next-generation sequencing technologies. Genome Res 2008, 18:1538-1543.
  • [5]Blow N: Transcriptomics: The digital generation. Nature 2009, 458:239-242.
  • [6]t Hoen PA, Ariyurek Y, Thygesen HH, Vreugdenhil E, Vossen RHAM, de Menezes RX, Boer JM, van Ommen GJB, den Dunnen JT: Deep sequencing-based expression analysis shows major advances in robustness, resolution and inter-lab portability over five microarray platforms. Nucleic Acids Res 2008, 36(21):e141.
  • [7]Rosenkranz RG, Borodina T, Lehrach H, Himmelbauer H: Characterizing the mouse ES cell transcriptome with Illumina sequencing. Genomics 2008, 92:187-194.
  • [8]Hegedus Z, Zakrzewska A, Agoston VC, Ordas A, Rácz P, Mink M, Spaink HP, Meijer AH: Deep sequencing of the zebrafish transcriptome response to mycobacterium infection. Mol Immunol 2009, 46:2918-2930.
  • [9]Morozova O, Marra MA: Applications of next-generation sequencing technologies in functional genomics. Genomics 2008, 92(5):255-264.
  • [10]Mortazavi A, Williams BA, Schaeffer L, Wold B: Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 2008, 5(7):621-628.
  • [11]Nagalakshmi U, Wang Z, Waern K, Shou C, Raha D, Gerstein M, Snyder M: The transcriptional landscape of the yeast genome defined by RNA sequencing. Science 2008, 320(5881):1344-1349.
  • [12]Sultan M, Schulz MH, Richard H, Magen A, Klingenhoff A, Scherf M, Seifert M, Borodina T, Soldatov A, Parkhomchuk D, Schmidt D, O'Keeffe S, Haas S, Vingron M, Lehrach H, Yaspo ML: A global view of gene activity and alternative splicing by deep sequencing of the human transcriptome. Science 2008, 321(5891):956-960.
  • [13]Xiang LX, He D, Dong WR, Zhang YW, Shao JZ: Deep sequencing-based transcriptome profiling analysis of bacteria-challenged Lateolabrax japonicus reveals insight into the immune-relevant genes in marine fish. BMC Genomics 2010, 11:472-493.
  • [14]Nystedt B, Street NR, Wetterbom A, Zuccolo A, Lin YC, Scofield DG, Vezzi F, Delhomme N, Giacomello S, Lexeyenko A, Vicedomini R, Sahlin K, Sherwood E, Elfstrand M, Gramzow L, Holmberg K, Hällman J, Keech O, Klasson L, Koriabine M, Kucukoglu M, Käller M, Luthman J, Lysholm F, Niittylä T, Olson Å, Rilakovic N, Ritland C, Rosselló JA, Sena J, et al.: The Norway spruce genome sequence and conifer genome evolution. Nature 2013, 497:579-584.
  • [15]Andersen CL, Jensen JL, Orntoft TF: Normalization of real-time quantitative reverse transcription-PCR data: A model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 2004, 64:5245-5250.
  • [16]Pfaffl MW, Tichopad A, Prgomet C, Neuvians TP: Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper-Excel-based tool using pair-wise correlations. Biotechnol Lett 2004, 26:509-515.
  • [17]Spinsanti G, Panti C, Lazzeri E, Marsili L, Marsili L, Casini S, Frati F, Fossi CM: Selection of reference genes for quantitative RT-PCR studies in striped dolphin (Stenella coeruleoalba) skin biopsies. BMC Mol Biol 2006, 7:32.
  • [18]Ainley WM, Walker JC, Nagao RT, Key JL: Sequence and characterization of two auxin regulated genes from soybean. J Biol Chem 1988, 263:10658-10666.
  • [19]Takaahashi Y, Kuroda H, Tanaka T, Machida Y, Takebe I, Nagata T: Isolation of an auxin regulated gene cDNA expressed during the transition from G0 to S phase in tobacco mesophyll protoplasts. Proc Natl Acad Sci U S A 1989, 86:9279-9283.
  • [20]Bögre L, Stefanov I, Abrahám M, Somogyi I, Dudits D: Differences in responses to 2,4-D-dichlorophenoxy acetic acid (2,4-D) treatment between embryogenic and non-embryogenic lines of alfalfa. In Progress in Plant cellular and Molecular Biology. Edited by Nijkamp HJJ, van der Plas LHW, Vartrajk J. Boston: Kluwer Academic Publishers; 1990:427-436.
  • [21]Schmidt EDL, Guzzo F, Toonen MAJ, de Vries SC: A leucine-rich repeat containing receptor-like kinase marks somatic plant cells competent to form embryos. Development 1997, 124:2049-2062.
  • [22]Somleva MN, Schmidt EDL, de Vries SC: Embryogenic cells in Dactylis glomerata L. (Poaceae) explants identified by cell tracking and by SERK expression. Plant Cell Rep 2000, 19:718-726.
  • [23]Hecht V, Vielle-Calzada JP, Hartog MV, Schmidt EDL, Boutilier K, Grossniklaus U, de Vries SC: The Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR KINASE 1 gene is expressed in developing ovules and embryos and enhances embryogenic competence in culture. Plant Physiol 2001, 127:803-816.
  • [24]Nolan KE, Irwanto RR, Rose RJ: Auxin up-regulates MtSERK1 expression in both Medicago truncatula root-forming and embryogenic cultures. Plant Physiol 2003, 133:218-230.
  • [25]Thomas C, Meyer D, Himber C, Steinmetz A: Spatial expression of a sunflower SERK gene during induction of somatic embryogenesis and shoot organogenesis. Plant Physiol Biochem 2004, 42:35-42.
  • [26]Santa-Catarina C, Hanai LR, Dornelas MC, Viana AM, Floh EIS: SERK gene homolog expression, polyamines and amino acids associated with somatic embryogenic competence of Ocotea catharinensis Mez. (Lauraceae). Plant Cell Tissue Organ Cult 2004, 79:53-61.
  • [27]Shimada T, Hirabayashi T, Endo T, Fujii H, Kita M, Omura M: Isolation and characterization of the somatic embryogenesis receptor-like kinase gene homologue (CitSERK1) from Citrus unshiu Marc. Sci Hortic 2005, 103:233-238.
  • [28]de Oliveira SM, Romano E, Yotoko KSC, Tinocoa MLP, Diasa BBA, Aragão FJL: Characterization of the cacao somatic embryogenesis receptor-like kinase (SERK) gene expressed during somatic embryogenesis. Plant Sci 2005, 168:723-729.
  • [29]Singla B, Khurana JP, Khurana P: Characterization of three somatic embryogenesis receptor kinase genes from wheat, Triticum aestivum. Plant Cell Rep 2008, 27:833-843.
  • [30]Shiota H, Satoh R, Watabe K, Harada H, Kamada H: C-ABI3, the carrot homologue of the Arabidopsis ABI3, is expressed during both zygotic and somatic embryogenesis and functions in the regulation of embryo-specific ABA-inducible genes. Plant Cell Physiol 1998, 39:1184-1193.
  • [31]Chapman A, Blervacq AS, Vasseur J, Hilbert JL: Arabinogalactan-proteins in Cichorium somatic embryogenesis: effect of β-glucosyl Yariv reagent and epitope localization during embryo development. Planta 2000, 211:305-314.
  • [32]Leljak-Levanic D, Naana B, Jelaska MS: Changes in DNA methylation during somatic embryogenesis in Cucurbita pepo L. Plant Cell Rep 2004, 23:120-127.
  • [33]Stasolla C, Bozhkov PV, Chu TM, van Zyl L, Egertsdotter U, Suarez MF, Craig D, Wolfinger RD, Von Arnold S, Sederoff RR: Variation in transcript abundance during somatic embryogenesis in gymnosperms. Tree Physiol 2004, 24:1073-1085.
  • [34]Toonen MAJ, Schmidt EDL, Heo TH, Verhoeven HA, van Kammen A, de Vries SC: Expression of the JIM8 cell wall epitope in carrot somatic embryogenesis. Planta 1996, 200:167-173.
  • [35]van der Graa VE, Dulk-Ras AD, Hooykaas PJJ, Keller B: Activation tagging of the LEAFY PETIOLE gene affects leaf petiole development in Arabidopsis thaliana. Development 2000, 127:4971-4980.
  • [36]van Hengel AJ, Guzzo F, van Kammen A, de Vries SC: Expression pattern of the carrot EP3 endochitinase genes in suspension cultures and in developing Seeds. Plant Physiol 1998, 117:43-53.
  • [37]von Recklinghausen IR, Iwanowska A, Kieft H, Mordhorst AP, Schel JHN, van Lammeren AAM: Structure and development of somatic embryos formed in Arabidopsis thaliana pt mutant callus cultures derived from seedlings. Protoplasma 2000, 211:217-224.
  • [38]Kreuger M, van Hoist GJ: Arabinogalactan proteins are essential in somatic embryogenesis of Daucus carota L. Planta 1993, 189:243-248.
  • [39]Egertsdotter U, von Arnold S: Importance of arabinogalactan proteins for the development of somatic embryos of Norway spruce (Picea abies). Physiol Plant 1995, 93:334-345.
  • [40]Kreuger M, Postma E, Brouwer Y, van Holst GJ: Somatic embryogenesis of Cyclamen persicum in liquid medium. Physiol Plant 1995, 94:605-612.
  • [41]Saare-Surminski K, Preilb W, Knox JP, Lieberei R: Arabinogalactan proteins in embryogenic and non-embryogenic callus cultures of Euphorbia pulcherrima. Physiol Plant 2000, 108:180-187.
  • [42]Filonova LH, von Arnold S, Daniel G, Bozhkov PV: Programmed cell death eliminates all but one embryo in a polyembryonic plant seed. Cell Death Differ 2002, 9:1057-1062.
  • [43]Haecker A, Gross-Hardt R, Geiges B, Sarkar A, Breuninger H, Herrmann M, Laux T: Expression dynamics of WOX genes mark cell fate decisions during early embryonic patterning in Arabidopsis thaliana. Development 2004, 131:657-668.
  • [44]Nardmann J, Zimmermann R, Durantini D, Kranz E, Werr W: WOX gene phylogeny in Poaceae: a comparative approach addressing leaf and embryo development. Mol Biol Evol 2007, 24:2474-2484.
  • [45]Palovaara J, Hakman I: Conifer WOX-related homeodomain transcription factors, developmental consideration and expression dynamic of WOX2 during Picea abies somatic embryogenesis. Plant Mol Biol 2008, 66:533-549.
  • [46]Klimaszewska K, Overton C, Stewart D, Rutledge RG: Initiation of somatic embryos and regeneration of plants from primordial shoots of 10-year-old somatic white spruce and expression profiles of 11 genes followed during the tissue culture process. Planta 2011, 233:635-647.
  • [47]Hedman H, Zhu TQ, von Arnold S, Sohlberg JJ: Analysis of the WUSCHEL-RELATED HOMEOBOX gene family in the conifer Picea abies reveals extensive conservation as well as dynamic patterns. BMC Plant Biol 2013, 13:89.
  • [48]Litvay JD, Verma DC, Johnson MA: Influence of a loblolly pine (Pinus taeda L.) culture medium and its components on growth and somatic embryogenesis of the wild carrot (Daucus carota L.). Plant Cell Rep 1985, 4:325-328.
  • [49]Li R, Yu C, Li Y, Lam TW, Yiu SM, Kristiansen K, Wang J: SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics 2009, 25(15):1966-1967.
  • [50]Law CW, Chen Y, Shi W, Smyth GK: Voom! Precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol 2014, 15:R29.
  • [51]Anders S, Huber W: Differential expression analysis for sequence count data. Genome Biol 2010, 11(10):R106.
  • [52]Benjamini Y, Hochberg Y: Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Series B-Methodological 1995, 57(1):289-300.
  • [53]Friedmann M, Ralph SG, Aeschliman D, Zhuang J, Ritland K, Ellis BE, Bohlmann J, Douglas CJ: Microarray gene expression profiling of developmental transitions in Sitka spruce (Picea sitchensis) apical shoots. J Exp Bot 2007, 58:593-614.
  • [54]Phillips MA, D’Auria JC, Luck K, Gershenzon J: Evaluation of Candidate Reference Genes for Real-Time Quantitative PCR of Plant Samples Using Purified cDNA as Template. Plant Mol Biol Rep 2009, 27:407-416.
  • [55]Ralph S, Yueh H, Friedmann M, Zeznik JA, Nelson CC, Butterfield YSN, Kirkpatrick R, Liu J, Jones SJM, Marra MA, Douglas CJ, Ritland K, Bohlmann J: Conifer defense against insects: microarray gene expression profiling of Sitka spruce (Picea sitchensis) induced by mechanical wounding or feeding by spruce budworms (Choristoneura occidentalis) or white pine weevils (Pissodes strobi) reveals large scale changes of the host transcriptome. Plant Cell Environ 2006, 29:1545-1570.
  文献评价指标  
  下载次数:1次 浏览次数:5次