BMC Genomics | |
Genomic selection accuracies within and between environments and small breeding groups in white spruce | |
Jean Bousquet1  André Rainville2  John MacKay1  Trevor K Doerksen3  Jean Beaulieu1  | |
[1] Canada Research Chair in Forest and Environmental Genomics, Institute for Systems and Integrative Biology, Université Laval, Quebec City, QC G1V 0A6, Canada;Ministère des Forêts, de la Faune et des Parcs du Québec, Direction de la recherche forestière, 2700 rue Einstein, Quebec City, QC G1P 3 W8, Canada;Natural Resources Canada, Canadian Forest Service, Canadian Wood Fibre Centre, 1055 du P.E.P.S, Stn. Sainte-Foy, P.O. Box 10380, Quebec City, QC G1V 4C7, Canada | |
关键词: Spruce; Somatic embryogenesis; Relatedness; Genotype-by-environment interactions; Genomic selection; | |
Others : 1090119 DOI : 10.1186/1471-2164-15-1048 |
|
received in 2014-06-12, accepted in 2014-11-19, 发布年份 2014 | |
【 摘 要 】
Background
Genomic selection (GS) may improve selection response over conventional pedigree-based selection if markers capture more detailed information than pedigrees in recently domesticated tree species and/or make it more cost effective. Genomic prediction accuracies using 1748 trees and 6932 SNPs representative of as many distinct gene loci were determined for growth and wood traits in white spruce, within and between environments and breeding groups (BG), each with an effective size of Ne ≈ 20. Marker subsets were also tested.
Results
Model fits and/or cross-validation (CV) prediction accuracies for ridge regression (RR) and the least absolute shrinkage and selection operator models approached those of pedigree-based models. With strong relatedness between CV sets, prediction accuracies for RR within environment and BG were high for wood (r = 0.71–0.79) and moderately high for growth (r = 0.52–0.69) traits, in line with trends in heritabilities. For both classes of traits, these accuracies achieved between 83% and 92% of those obtained with phenotypes and pedigree information. Prediction into untested environments remained moderately high for wood (r ≥ 0.61) but dropped significantly for growth (r ≥ 0.24) traits, emphasizing the need to phenotype in all test environments and model genotype-by-environment interactions for growth traits. Removing relatedness between CV sets sharply decreased prediction accuracies for all traits and subpopulations, falling near zero between BGs with no known shared ancestry. For marker subsets, similar patterns were observed but with lower prediction accuracies.
Conclusions
Given the need for high relatedness between CV sets to obtain good prediction accuracies, we recommend to build GS models for prediction within the same breeding population only. Breeding groups could be merged to build genomic prediction models as long as the total effective population size does not exceed 50 individuals in order to obtain high prediction accuracy such as that obtained in the present study. A number of markers limited to a few hundred would not negatively impact prediction accuracies, but these could decrease more rapidly over generations. The most promising short-term approach for genomic selection would likely be the selection of superior individuals within large full-sib families vegetatively propagated to implement multiclonal forestry.
【 授权许可】
2014 Beaulieu et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150128154321334.pdf | 492KB | download | |
Figure 1. | 64KB | Image | download |
【 图 表 】
Figure 1.
【 参考文献 】
- [1]Meuwissen THE, Hayes BJ, Goddard ME: Prediction of total genetic value using genome-wide dense marker maps. Genetics 2001, 157:1819-1829.
- [2]Daetwyler HD, Villanueva B, Bijma P, Woolliams JA: Inbreeding in genome-wide selection. J Anim Breed Genet 2007, 124:369-376. http://dx.doi.org/10.1111/j.1439-0388.2007.00693.x webcite
- [3]Crossa J, Perez P, Hickey J, Burgueño J, Ornella L, Ceron Rojas J, Zhang X, Dreisigacker Babu R, Li Bonnett D, Mathews K: Genomic prediction in CIMMYT maize and wheat breeding programs. Heredity 2014, 112:48-60. http://dx.doi.org/10.1038/hdy.2013.16 webcite
- [4]Grattapaglia D, Resende MDV: Genomic selection in forest tree breeding. Tree Genet Genomes 2011, 7:241-255. http://dx.doi.org/10.1007/s11295-010-0328-4 webcite
- [5]Iwata H, Hayashi T, Tsumura Y: Prospects for genomic selection in conifer breeding: a simulation study of Cryptomeria japonica. Tree Genet Genomes 2011, 7:747-758. http://dx.doi.org/10.1007/s11295-011-0371-9 webcite
- [6]Denis M, Bouvet JM: Efficiency of genomic selection with models including dominance effect in the context of Eucalyptus breeding. Tree Genet Genomes 2013, 9:37-51. http://dx.doi.org/10.1007/s11295-012-0528-1 webcite
- [7]Resende MFR Jr, Muñoz P, Acosta JJ, Peter GF, Davis JM, Grattapaglia D, Resende MDV, Kirst M: Accelerating the domestication of trees using genomic selection: accuracy of prediction models across ages and environments. New Phytol 2012, 193:617-624. http://dx.doi.org/10.1111/j.1469-8137.2011.03895.x webcite
- [8]Resende MDV, Resende MFR Jr, Sansaloni CP, Petroli CD, Missiaggia AA, Aguiar AM, Abad JM, Takahashi EK, Rosado AM, Faria DA, Pappas GJ Jr, Kilian A, Grattapaglia D: Genomic selection for growth and wood quality in Eucalyptus: capturing the missing heritability and accelerating breeding for complex traits in forest trees. New Phytol 2012, 194:116-128. http://dx.doi.org/10.1111/j.1469-8137.2011.04038.x webcite
- [9]Resende MFR, Muñoz P, Resende MDV, Garrick DJ, Fernando RL, Davis JM, Jokela EJ, Martin TA, Peter GF, Kirst M: Accuracy of genomic selection methods in a standard data set of loblolly pine (Pinus taeda L.). Genetics 2012, 190:1503-1510. http://dx.doi.org/10.1534/genetics.111.137026 webcite
- [10]Wong CK, Bernardo R: Genomewide selection in oil palm: increasing selection gain per unit time and cost with small populations. Theor Appl Genet 2008, 116:815-824. http://dx.doi.org/10.1007/s00122-008-0715-5 webcite
- [11]Kumar S, Chagné D, Bink MCAM, Volz RK, Whitworth C, Carlisle C: Genomic selection for fruit quality traits in apple (Malus × domestica Borkh.). PLoS One 2012, 7:e36674. http://dx.doi.org/10.1371/journal.pone.0036674 webcite
- [12]Habier D, Fernando RL, Dekkers JCM: The impact of genetic relationship information on genome-assisted breeding values. Genetics 2007, 177:2389-2397. http://dx.doi.org/10.1534/genetics.107.081190 webcite
- [13]Hayes BJ, Bowman PJ, Chamberlain AC, Verbyla K, Goddard ME: Accuracy of genomic breeding values in multi-breed dairy cattle populations. Genet Sel Evol 2009, 41:51. http://dx.doi.org/10.1186/1297-9686-41-51 webcite BioMed Central Full Text
- [14]Windhausen VS, Atlin GN, Hickey JM, Crossa J, Jannink J-L, Sorrells ME, Raman B, Cairns JE, Tarekegne A, Semagn K, Beyene Y, Grudloyma P, Technow F, Riedelsheimer C, Melchinger AE: Effectiveness of genomic prediction of maize hybrid performance in different breeding populations and environments. Genes Genomes Genet 2012, 2:1427-1436. http://dx.doi.org/10.1534/g3.112.003699 webcite
- [15]Legarra A, Robert-Granié C, Manfredi E, Elsen JM: Performance of genomic selection in mice. Genetics 2008, 180:611-618.
- [16]Albrecht T, Wimmer V, Auinger H-J, Erbe M, Knaak C, Ouzunova M, Simianer H, Schön CC: Genome-based prediction of testcross values in maize. Theor Appl Genet 2011, 123:339-350. http://dx.doi.org/10.1007/s00122-011-1587-7 webcite
- [17]Makowsky R, Pajewski NM, Klimentidis YC, Vazquez AI, Duarte CW, Allison DB, De Los Campos G: Beyond missing heritability: prediction of complex traits. PLoS Genet 2011, 7:e1002051. http://dx.doi.org/10.1371/journal.pgen.1002051 webcite
- [18]Beaulieu J, Doerksen T, Clément S, MacKay J, Bousquet J: Accuracy of genomic selection models in a large population of open-pollinated families in white spruce. Heredity 2014, 113:343-352. http://dx.doi.org/10.1038/hdy.2014.36 webcite
- [19]Zapata Valuenzuela J, Whetten RW, Neale DB, McKeand SE, Isik F: Genomic estimated breeding values using genomic relationship matrices in a cloned population of loblolly pine. Genes Genomes Genet 2103, 3:909-916. http://dx.doi.org/10.1534/g3.113.005975 webcite
- [20]Zapata Valenzuela J, Lsik F, Maltecca C, Wegrzyn J, Neale D, McKeand S, Whetten R: SNP markers trace familial linkages in a cloned population of Pinus taeda – prospects for genomic selection. Tree Genet Genomes 2012, 8:1307-1318. http://dx.doi.org/10.1007/s11295-012-0516-5 webcite
- [21]Whittaker JC, Thompson R, Denham MC: Marker-assisted selection using ridge regression. Genet Res 2000, 75:249-252.
- [22]Piepho HP: Ridge regression and extensions for genomewide selection in maize. Crop Sci 2009, 49:1165-1176. http://dx.doi.org/10.2135/cropsci2008.10.0595 webcite
- [23]Brown GR, Bassoni DL, Gill GP, Fontana JR, Wheeler NC, Megraw RA, Davis MF, Sewell MM, Tuskan GA, Neale DB: Identification of quantitative trait loci influencing wood property traits in loblolly pine (Pinus taeda L.). III. QTL verification and candidate gene mapping. Genetics 2003, 164:1537-1546.
- [24]Ukrainetz NK, Ritland K, Mansfield SD: Identification of quantitative trait loci for wood quality and growth across eight full-sib coastal Douglas-fir families. Tree Genet Genomes 2008, 4:159-170. http://dx.doi.org/10.1007/s11295-007-0097-x webcite
- [25]Beaulieu J, Doerksen T, Boyle B, Clément S, Deslauriers M, Beauseigle S, Blais S, Poulin PL, Lenz P, Caron S, Rigault P, Bicho P, Bousquet J, MacKay J: Association genetics of wood physical traits in the conifer white spruce and relationships with gene expression. Genetics 2011, 188:197-214. http://dx.doi.org/10.1534/genetics.110.125781 webcite
- [26]De Los Campos G, Naya H, Gianola D, Crossa J, Legarra A, Manfredi E, Weigel K, Cotes JM: Predicting quantitative traits with regression models for dense molecular markers and pedigree. Genetics 2009, 182:375-385. http://dx.doi.org/10.1534/genetics.109.101501 webcite
- [27]Croiseau P, Legarra A, Guillaume F, Fritz S, Baur A, Colombani C, Robert-Granié C, Boichard D, Ducrocq V: Fine tuning genomic evaluations in dairy cattle through SNP pre-selection with the Elastic-Net algorithm. Genet Res 2011, 93:409-417. http://dx.doi.org/10.1017/S0016672311000358 webcite
- [28]Heslot N, Yang HP, Sorrells ME, Jannink JL: Genomic selection in plant breeding: a comparison of models. Crop Sci 2012, 52:146-160. http://dx.doi.org/10.2135/cropsci2011.06.0297 webcite
- [29]Burgueño J, De Los Campos G, Weigel K, Crossa J: Genomic prediction of breeding values when modeling genotype × environment interaction using pedigree and dense molecular markers. Crop Sci 2012, 52:707-719. http://dx.doi.org/10.2135/cropsci2011.06.0299 webcite
- [30]Beaulieu J: Breeding program and strategy for white spruce in Quebec. Information Report LAU-X-117E Quebec, QC: Natural Resources Canada, Canadian Forest Service 1996.
- [31]Burdon RD, Namkoong G: Short note: multiple populations and sublines. Silvae Genet 1983, 32:221-222.
- [32]Pavy N, Gagnon F, Rigault P, Blais S, Deschênes A, Boyle B, Pelgas B, Deslauriers M, Clément S, Lavigne P, Lamothe M, Cooke JEK, Jaramillo Correa JP, Beaulieu J, Isabel N, MacKay J, Bousquet J: Development of high-density SNP genotyping arrays for white spruce (Picea glauca) and transferability to subtropical and nordic congeners. Mol Ecol Resour 2013, 13:324-336. http://dx.doi.org/10.1111/1755-0998.12062 webcite
- [33]Forni S, Aguilar I, Misztal I: Different genomic relationship matrices for single-step analysis using phenotypic, pedigree and genomic information. Genet Sel Evol 2011, 43:1. http://dx.doi.org/10.1186/1297-9686-43-1 webcite BioMed Central Full Text
- [34]R Development Core Team: R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2012. http://www.R-project.org/ webcite
- [35]Hadfield JD: MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package. J Stat Softw 2010, 33:1-22.
- [36]Plummer M, Best N, Cowles K, Vines K: CODA: convergence diagnosis and output analysis for MCMC. R News 2006, 6:7-11.
- [37]Pérez P, De Los Campos G, Crossa J, Gianola D: Genomic-enabled prediction based on molecular markers and pedigree using the BLR package in R. Plant Genome 2010, 3:106-116. http://dx.doi.org/10.3835/plantgenome2010.04.0005 webcite
- [38]De Los Campos G, Rodriguez PP: BLR: Bayesian linear regression. R package version 13 2012. http://CRAN.R-project.org/package=BLR webcite
- [39]Kang HM, Sul JH, Zaitlen NA, Kong S, Freimer NB, Sabatti C, Eskin E: Variance component model to account for sample structure in genome-wide association studies. Nat Genet 2010, 42(4):348-354. http://dx.doi.org/10.1038/ng.548 webcite
- [40]Endelman JB: Ridge regression and other kernels for genomic selection with R package rrBLUP. Plant Genome 2011, 4:250-255.
- [41]Goddard ME, Wray NR, Verbyla K, Visscher PM: Estimating effects and making predictions from genome-wide marker data. Stat Sci 2009, 24:517-529.
- [42]Wray NR, Yang J, Hayes BJ, Price AL, Goddard ME, Visscher PM: Pitfalls of predicting complex traits from SNPs. Nat Rev Genet 2013, 14:507-515.
- [43]Pavy N, Pelgas B, Laroche J, Rigault P, Isabel N, Bousquet J: A spruce gene map infers ancient plant genome reshuffling and subsequent slow evolution in the gymnosperm lineage leading to extant conifers. BMC Biol 2012, 10:84. http://dx.doi.org/10.1186/1741-7007-10-84 webcite BioMed Central Full Text
- [44]Jaramillo Correa JP, Beaulieu J, Bousquet J: Contrasting evolutionary forces driving population structure at expressed sequence tag polymorphisms, allozymes and quantitative traits in white spruce. Mol Ecol 2001, 10:2729-2740. http://dx.doi.org/10.1046/j.0962-1083.2001.01386.x webcite
- [45]Namroud M-C, Beaulieu J, Juge N, Laroche J, Bousquet J: Scanning the genome for gene single nucleotide polymorphisms involved in adaptive population differentiation in white spruce. Mol Ecol 2008, 17:3599-3613.
- [46]De Roos APW, Hayes BJ, Spelman RJ, Goddard ME: Linkage disequilibrium and persistence of phase in Holstein-Friesian, Jersey and Angus cattle. Genetics 2008, 179:1503-1512. http://dx.doi.org/10.1534/genetics.107.084301 webcite
- [47]Kizilkaya K, Fernando RL, Garrick DJ: Genomic prediction of simulated multibreed and purebred performance using observed fifty thousand single nucleotide polymorphism genotypes. J Anim Sci 2010, 88:544-551. http://dx.doi.org/10.2527/jas.2009-2064 webcite
- [48]Jannink JL, Bink MCAM, Jansen RC: Using complex plant pedigrees to map valuable genes. Trends Plant Sci 2001, 6:337-342. http://dx.doi.org/10.1016/S1360-1385(01)02017-9 webcite
- [49]Villanueva B, Pong-Wong R, Fernandez J, Toro MA: Benefits from marker-assisted selection under an additive polygenic genetic model. J Anim Sci 2005, 83:1747-1752.
- [50]Habier D, Fernando RL, Garrick DJ: Genomic-BLUP decoded: a look into the black box of genomic prediction. Genetics 2013, 194:597-607. http://dx.doi.org/10.1534/genetics.113.152207 webcite
- [51]Hayes BJ, Visscher PM, Goddard ME: Increased accuracy of artificial selection by using the realized relationship matrix. Genet Res 2009, 91:47-60.
- [52]Goddard ME, Hayes BJ, Meuwissen THE: Using the genomic relationship matrix to predict the accuracy of genomic selection. J Anim Breed Genet 2011, 128:409-421. http://dx.doi.org/10.1111/j.1439-0388.2011.00964.x webcite
- [53]Visscher PM, Medland SE, Ferreira MAR, Morley KI, Zhu G, Cornes BK, Montgomery GW, Martin NG: Assumption-free estimation of heritability from genome-wide identity-by-descent sharing between full siblings. PLoS Genet 2006, 2:41. http://dx.doi.org/10.1371/journal.pgen.0020041 webcite
- [54]VanRaden PM: Genomic measures of relationship and inbreeding. Proceed Interbull Meeting Dublin Ireland 2007, 37:33-36.
- [55]Visscher PM: Whole genome approaches to quantitative genetics. Genetica 2009, 136:351-358. http://dx.doi.org/10.1007/s10709-008-9301-7 webcite
- [56]Clark SA, Hickey JM, Daetwyler HD, Van Der Werf JHJ: The importance of information on relatives for the prediction of genomic breeding values and the implications for the makeup of reference data sets in livestock breeding schemes. Genet Sel Evol 2012, 44:4. http://dx.doi.org/10.1186/1297-9686-44-4 webcite BioMed Central Full Text
- [57]Campbell RK: Genotype x Environment Interaction: A Case Study for Douglas-fir in Western Oregon. Portland, OR: USDA Forest Service Research Paper PNW-RP-455. Pacific Northwest Research Station; 1992.
- [58]Li P, Beaulieu J, Bousquet J: Genetic structure and patterns of genetic variation among populations in eastern white spruce (Picea glauca). Can J For Res 1997, 27:189-198.
- [59]Zobel BJ, Talbert J: Applied Forest Tree Improvement. New York: Wiley; 1984.
- [60]Kelly AM, Cullis BR, Gilmour AR, Eccleston JA, Thompson R: Estimation in a multiplicative mixed model involving a genetic relationship matrix. Genet Sel Evol 2009, 41:33. http://dx.doi.org/10.1186/1297-9686-41-33 webcite BioMed Central Full Text
- [61]Apiolaza LA: Improvement objectives for short rotation forestry. New Zealand J For 2008, 52:28-30.
- [62]Legarra A, Aguilar I, Misztal I: A relationship matrix including full pedigree and genomic information. J Dairy Sci 2009, 92:4656-4663. http://dx.doi.org/10.3168/jds.2009-2061 webcite
- [63]Christensen OF, Lund MS: Genomic prediction when some animals are not genotyped. Genet Sel Evol 2010, 42:2. http://dx.doi.org/10.1186/1297-9686-42-2 webcite BioMed Central Full Text
- [64]VanRaden PM: Efficient methods to compute genomic predictions. J Dairy Sci 2008, 91:4414-4423. http://dx.doi.org/10.3168/jds.2007-0980 webcite