期刊论文详细信息
BMC Microbiology
Cell death and ultrastructural alterations in Leishmania amazonensis caused by new compound 4-Nitrobenzaldehyde thiosemicarbazone derived from S-limonene
Celso Vataru Nakamura1  Redouane Borsali3  Benedito Prado Dias Filho1  Cleuza Conceição Silva2  Tânia Ueda-Nakamura1  Hugo Falzirolli2  Débora Botura Scariot1  Elizandra Aparecida Britta1 
[1] Programa de Pós-graduação em Ciências Farmacêuticas, Universidade Estadual de Maringá, Avenida Colombo, Jd. Universitário, Maringá 5790, PR, Brazil;Departamento de Química, Universidade Estadual de Maringá, Maringá, PR, Brazil;Université Grenoble Alpes, CERMAV-CNRS UPR 5301, Grenoble F-38000, France
关键词: Cellular disorganization;    Electron microscopy;    Mitochondria damage;    Ultrastructural alterations;    Leishmania amazonensis;    Benzaldehyde thiosemicarbazone;    Antileishmanial activity;   
Others  :  1170527
DOI  :  10.1186/s12866-014-0236-0
 received in 2014-06-18, accepted in 2014-08-20,  发布年份 2014
PDF
【 摘 要 】

Background

The treatment of leishmaniasis with pentavalent antimonials is problematic because of their toxicity. Investigations of potentially active molecules are important to discover less toxic drugs that are viable economic alternatives for the treatment of leishmaniasis. Thiosemicarbazones are a group of molecules that are known for their wide versatility and biological activity. In the present study, we examined the antileishmania activity, mechanism of action, and biochemical alterations produced by a novel molecule, 4-nitrobenzaldehyde thiosemicarbazone (BZTS), derived from S-limonene against Leishmania amazonensis.

Results

BZTS inhibited the growth of the promastigote and axenic amastigote forms, with an IC50 of 3.8 and 8.0 ?M, respectively. Intracellular amastigotes were inhibited by the compound with an IC50 of 7.7 ?M. BZTS also had a CC50 of 88.8 ?M for the macrophage strain J774A1. BZTS altered the shape, size, and ultrastructure of the parasites, including damage to mitochondria, reflected by extensive swelling and disorganization of the inner mitochondrial membrane, intense cytoplasmic vacuolization, and the presence of concentric membrane structures inside the organelle. Cytoplasmic lipid bodies, vesicles inside vacuoles in the flagellar pocket, and enlargement were also observed. BZTS did not induce alterations in the plasma membrane or increase annexin-V fluorescence intensity, indicating no phosphatidylserine exposure. However, it induced the production of mitochondrial superoxide anion radicals.

Conclusions

The present results indicate that BZTS induced dramatic effects on the ultrastructure of L. amazonensis, which might be associated with mitochondrial dysfunction and oxidative damage, leading to parasite death.

【 授权许可】

   
2014 Britta et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150417020524938.pdf 3256KB PDF download
Figure 10. 34KB Image download
Figure 9. 36KB Image download
Figure 8. 13KB Image download
Figure 7. 35KB Image download
Figure 6. 38KB Image download
Figure 5. 104KB Image download
Figure 4. 80KB Image download
Figure 3. 68KB Image download
Figure 2. 35KB Image download
Figure 1. 11KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.

【 参考文献 】
  • [1][http://www.who.int/leishmaniasis/en/index.html] webcite World Health Organization: Parasitic Disease. In World Health Organization; Available via internet: . [Online early access: May/13/2014].
  • [2]Chappuis F, Alirol E, Worku DT, Mueller Y: High mortality among older patients treated with pentavalent antimonials for visceral Leishmaniasis in East Africa and rationale for switch to Liposomal Amphotericin B. Antimicrob Agents Chemother 2011, 55(1):455-456.
  • [3]Desjeux P: Leishmaniasis: current situation and new perspectives. Comp Immunol Microbiol Infect Dis 2004, 27(5):305-318.
  • [4]Cunha-Júnior EF, Pacienza-Lima W, Ribeiro GA, Netto CD, Canto-Cavalheiro MM, Silva AJM, Costa PR, Rossi-Bergmann B, Torres-Santos EC: Effectiveness of the local or oral delivery of the novel naphthopterocarpanquinone LQB-118 against cutaneous leishmaniasis. J Antimicrob Chemother 2011, 66(7):1555-1559.
  • [5]Gingras BA, Hornal RW, Hayley CH: The preparation of some thiosemicarbazones and their copper complexes: Part I. Can J Chem 1960, 38(5):712-719.
  • [6]Beraldo H, Gambino D: The wide pharmacological versatility of semicarbazones, thiosemicarbazones and their metal complexes. Mini Rev Med Chem 2004, 4(1):31-39.
  • [7]Pelosi G: Thiosemicarbazone metal complexes: from structure to activity. The Open Crystallography Journal 2010, 3(1):16-28.
  • [8]Knox JJ, Hotte SJ, Kollmannsberger C, Winquist E, Fisher B, Eisenhauer EA: Phase II study of Triapine® in patients with metastatic renal cell carcinoma: a trial of the National Cancer Institute of Canada Clinical Trials Group (NCIC IND.161). Invest New Drugs 2007, 25(5):471-477.
  • [9][http://clinicaltrials.gov/show/NCT01835171] webcite U.S. National Institutes of Health: Available via internet: . [Online early access: March/13/2014].
  • [10]Hernández W, Paz J, Carrasco F, Vaisberg A, Spodine E, Manzur J, Lothar H, Joachim S, Steffen B, Lothar B: Synthesis and characterization of new palladium(ii) thiosemicarbazone complexes and their cytotoxic activity against various human tumor cell lines.Bioinorg Chem Appl 2013, ?:12. doi:10.1155/2013/524701.
  • [11]Li MX, Chen CL, Zhang D, Niu JY, Ji BS: Mn(II), Co (II) and Zn(II) complexes with heterocyclic substituted thiosemicarbazones: synthesis, characterization, X-ray crystal structures and antitumor comparison. Eur J Med Chem 2010, 45(7):3169-3177.
  • [12]Qin Y, Xing R, Liu S, Li K, Meng X, Li R, Cui J, Li B, Li P: Novel thiosemicarbazone chitosan derivatives: preparation, characterization, and antifungal activity. Carbohydr Polym 2012, 87(4):2664-2670.
  • [13]Britta EA, Silva APB, Ueda-Nakamura T, Dias-Filho BP, Silva CC, Sernaglia RL, Nakamura CV: Benzaldehyde thiosemicarbazone derived from limonene complexed with copper induced mitochondrial dysfunction in Leishmania amazonensis. Plos One 2012, 7(8):e41440.
  • [14]Castro EF, Fabian LE, Caputto ME, Gagey D, Finkielsztein LM, Moltrasio GY, Moglioni AG, Campos RH, Cavallaro LV: Inhibition of bovine viral diarrhea virus RNA synthesis by thiosemicarbazone derived from 5,6-dimethoxy-1-indanone. J Virol 2011, 85(11):5436-5445.
  • [15]Chen LH, Hu YH, Song W, Song KK, Liu X, Jia YL, Zhuang JX, Chen QX: Synthesis and antityrosinase mechanism of benzaldehyde thiosemicarbazones: novel tyrosinase inhibitors. J Agric Food Chem 2012, 60(6):1542-1547.
  • [16]Goto H, Lindoso JAL: Cutaneous and mucocutaneous Leishmaniasis. Infect Dis Clin 2012, 26(2):293-307.
  • [17]Arruda DC, Miguel DC, Yokoyama-Yasunaka JKU, Katzin AM, Uliana SRB: Inhibitory activity of limonene against Leishmania parasites in vitro and in vivo. Biomed Pharmacother 2009, 63(9):643-649.
  • [18]Santin MR, Santos AO, Nakamura CV, Dias-Filho BP, Ferreira ICP, Ueda-Nakamura T: In vitro activity of the essencial oil of Cymbopogon citratus and its major component (citral) on Leishmania amazonensis. Parasitol Res 2009, 105(6):1489-1496.
  • [19]Valdez RH, Tonin LTD, Ueda-Nakamura T, Dias-Filho BP, Morgado-Díaz JA, Sarragiotto MH, Nakamura CV: Biological activity of 1,2,3,4-tetrahydro-?-carboline-3-carboxamides against Trypanosoma cruzi. Acta Trop 2009, 110(1):7-14.
  • [20]Aponte JC, Castilho D, Estevez Y, Gonzalez G, Arevalo J, Hammond GB, Sauvain M: In vitro and in vivo anti-Leishmania activity polysubstituted synthetic chalcones. Bioorg Med Chem Lett 2010, 20(1):100-103.
  • [21]Graebin CS, De Madeira MF, Yokoyama-Yasunaka JKU, Miguel DC, Uliana SRB, Benitez D, Cerecetto H, González M, Rosa RG, Eifler-Lima VL: Synthesis and in vitro activity of limonene derivatives against Leishmania and Trypanosoma. Eur J Med Chem 2010, 45(4):1524-1528.
  • [22]Inácio JDF, Canto-Cavalheiro MM, Menna-Barreto RFS, Almeida-Amaral EE: Mitochondrial damage contribute to epigallocatechin-3-gallate induced death in Leishmania amazonensis. Exp Parasitol 2012, 132(2):151-155.
  • [23]Monzote L, García M, Pastor J, Gil L, Scull R, Maes L, Cos P, Gille L: Essencial oil from Chenopodium ambrosioides and main components: activity against Leishmania, their mitochondria and other microorganisms. Exp Parasitol 2014, 136:20-26.
  • [24]Takahashi H, Britta EA, Longhini R, Ueda-Nakamura T, de Mello JC P, Nakamura CV: Antileishmanial activity of 5-methyl-2,2¿:5¿,2¿-terthiophene isolated from Porophyllum ruderale is related to mitochondrial dysfunction in Leishmania amazonensis. Planta Med 2013, 79(5):330-333.
  • [25]Volpato H, Desoti VC, Cogo J, Panice MR, Sarragioto MH, Silva SO, Ueda-Nakamura T, Nakamura CV: The effects of N-butyl-1-(4-dimethylamino) phenyl-1,2,3,4-tetrahydro-?-carboline-3-carboxamide against Leishmania amazonensis are mediated by mitochondrial dysfunction. Evid Based Complement Alternat Med 2013, 2013:874367.
  • [26]Lazarin-Bidóia D, Desoti VC, Ueda-Nakamura T, Dias-Filho BP, Nakamura CV, Silva SO: Further evidence of the trypanocidal action of eupomatenoid-5: confirmation of involvement of reactive oxygen species and mitochondria owing to a reduction in trypanothione reductase activity. Free Radic Biol Med 2013, 60:17-28.
  • [27]Garcia FP, Lazarin-Bidóia D, Ueda-Nakamura T, Silva SO, Nakamura CV: Eupomatenoid-5 isolated from leaves of Piper regnellii induces apoptosis in Leishmania amazonensis. Evid Based Complement Alternat Med 2013, 2013:940531.
  • [28]Luque-Ortega JR, Reuther P, Rivas L, Dardonville C: New Benzophenone-derived Bisphosphonium Salts as Leishmanicidal leads targeting mitochondria through inhibition of respiratory complex II. J Med Chem 2010, 53(4):1788-1798.
  • [29]Desoti VC, Lazarin-Bidóia D, Sudati DB, Pereira RC, Alonso A, Ueda-Nakamura T, Dias-Filho BP, Nakamura CV, Silva SO: Trypanocidal action of (?)-Elatol involves an oxidative stress triggered by mitochondria dysfunction. Mar Drugs 2012, 10(8):1631-1646.
  • [30]Medina JM, Rodrigues JCF, De Souza W, Atella GC, Barrabim H: Tomatidine promotes the inhibition of 24-alkylated sterol biosynthesis and mitochondrial dysfunction in Leishmania amazonensis promastigotes. Parasitology 2012, 139(10):1253-1265.
  • [31]Serrano-Martín X, García-Marchan Y, Fernandez A, Rodriguez N, Rojas H, Visbal G, Benaim G: Amiodarone destabilizes intracellular Ca2+homeostasis and biosynthesis of sterols inLeishmania mexicana.Antimicrob Agents Chemother 2009, 53(4):1403¿1410.
  • [32]Macedo-Silva ST, Silva TLAO, Urbina JÁ, De Souza W, Rodrigues JCF: Antiproliferative, ultrastructural, and physiologycal effects of amiodarone on promastigote and amastigote forms ofLeishmania amazonensis.Mol Biol Int 2011, ?:876021¿12. doi:10.4061/2011/876021.
  • [33]Shioji Tiuman T, Ueda-Nakamura T, Alonso A, Nakamura CV: Cell death in amastigote forms of Leishmania amazonensis induced by partenolide. BMC Microbiol 2014, 14(1):152. BioMed Central Full Text
  • [34]Godinho JLP, Georgikopoulou K, Calogeropoulou T, De Souza W, Rodrigues JC: A novel alkyl phosphocholine-dinitroaniline hybrid molecule exhibits biological activity in vitro against Leishmania amazonensis. Exp Parasitol 2013, 135(1):153-165.
  • [35]Shivahare R, Korthikunta V, Chandasana H, Suthar MA, Agnihotri P, Vishwakarma P, Chaitanya TK, Kancharla P, Khaliq T, Gupta S, Bhatta RS, Pratap JV, Saxena JK, Gupta S, Tadigoppula N: Structure???activity relationships, and biological studies of chromenochalcones as potential antileishmanial agents. J Med Chem 2014, 57(8):3342-3357.
  • [36]Rodrigues JCF, Attias M, Rodriguez C, Urbina JA, De Souza W: Ultrastructural and biochemical alterations induced by 22,26-Azasterol, a ?24(25)-Sterol methyltransferase inhibitor, on promastigote and amastigote forms ofLeishmania amazonensis.Antimicrob Agents Chemother 2002, 46(2):487¿499.
  • [37]Yamaguchi MU, Da Silva APB, Ueda-Nakamura T, Dias-Filho BP, Da Silva CC, Nakamura CV: Effects of a Thiosemicarbazone Camphene derivate on Trichophyton mentagrophytes. Molecules 2009, 15(5):1796-1807.
  文献评价指标  
  下载次数:1次 浏览次数:8次