期刊论文详细信息
BMC Genetics
Characterization of linkage disequilibrium, consistency of gametic phase and admixture in Australian and Canadian goats
Flavio S. Schenkel5  Mehdi Salgorzaei4  Ricardo V. Ventura1  Laercio R. Porto-Neto2  James W. Kijas2  Daniela A. Grossi5  Mohsen Jafarikia3  Luiz F. Brito5 
[1] Beef Improvement Opportunities, Guelph, ON, Canada;CSIRO Agriculture Flagship, Brisbane, QLD, Australia;Canadian Centre for Swine Improvement Inc, Ottawa, ON, Canada;The Semex Alliance, Guelph, ON, Canada;Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, ON, Canada
关键词: LD;    k panel;    Goat 50 ;    Goat breeds;    Genomic selection;    Effective population size;   
Others  :  1216011
DOI  :  10.1186/s12863-015-0220-1
 received in 2015-02-12, accepted in 2015-05-19,  发布年份 2015
PDF
【 摘 要 】

Background

Basic understanding of linkage disequilibrium (LD) and population structure, as well as the consistency of gametic phase across breeds is crucial for genome-wide association studies and successful implementation of genomic selection. However, it is still limited in goats. Therefore, the objectives of this research were: (i) to estimate genome-wide levels of LD in goat breeds using data generated with the Illumina Goat SNP50 BeadChip; (ii) to study the consistency of gametic phase across breeds in order to evaluate the possible use of a multi-breed training population for genomic selection and (iii) develop insights concerning the population history of goat breeds.

Results

Average r 2between adjacent SNP pairs ranged from 0.28 to 0.11 for Boer and Rangeland populations. At the average distance between adjacent SNPs in the current 50 k SNP panel (~0.06 Mb), the breeds LaMancha, Nubian, Toggenburg and Boer exceeded or approached the level of linkage disequilibrium that is useful (r 2  > 0.2) for genomic predictions. In all breeds LD decayed rapidly with increasing inter-marker distance. The estimated correlations for all the breed pairs, except Canadian and Australian Boer populations, were lower than 0.70 for all marker distances greater than 0.02 Mb. These results are not high enough to encourage the pooling of breeds in a single training population for genomic selection. The admixture analysis shows that some breeds have distinct genotypes based on SNP50 genotypes, such as the Boer, Cashmere and Nubian populations. The other groups share higher genome proportions with each other, indicating higher admixture and a more diverse genetic composition.

Conclusions

This work presents results of a diverse collection of breeds, which are of great interest for the implementation of genomic selection in goats. The LD results indicate that, with a large enough training population, genomic selection could potentially be implemented within breed with the current 50 k panel, but some breeds might benefit from a denser panel. For multi-breed genomic evaluation, a denser SNP panel also seems to be required.

【 授权许可】

   
2015 Brito et al.

【 预 览 】
附件列表
Files Size Format View
20150628010519316.pdf 1436KB PDF download
Fig. 8. 46KB Image download
Fig. 7. 39KB Image download
Fig. 6. 58KB Image download
Fig. 5. 38KB Image download
Fig. 4. 43KB Image download
Fig. 3. 52KB Image download
Fig. 2. 37KB Image download
Fig. 1. 40KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

Fig. 7.

Fig. 8.

【 参考文献 】
  • [1]Meuwissen TH, Hayes BJ, Goddard ME. Prediction of total genetic value using genome-wide dense marker maps. Genetics. 2001; 157(4):1819-29.
  • [2]Tosser-Klopp G, Bardou P, Bouchez O, Cabau C, Crooijmans R, Dong Y et al.. Design and characterization of a 52K SNP chip for goats. PLoS One. 2014; 9(1):e86227.
  • [3]Slatkin M. Linkage disequilibrium–understanding the evolutionary past and mapping the medical future. Nat Rev Genet. 2008; 9(6):477-85.
  • [4]Khatkar MS, Nicholas FW, Collins AR, Zenger KR, Cavanagh JA, Barris W et al.. Extent of genome-wide linkage disequilibrium in Australian Holstein-Friesian cattle based on a high-density SNP panel. BMC Genomics. 2008; 9:187. BioMed Central Full Text
  • [5]Uimari P, Tapio M. Extent of linkage disequilibrium and effective population size in Finnish Landrace and Finnish Yorkshire pig breeds. J Anim Sci. 2011; 89(3):609-14.
  • [6]Badke YM, Bates RO, Ernst CW, Schwab C, Steibel JP. Estimation of linkage disequilibrium in four US pig breeds. BMC Genomics. 2012; 13:24. BioMed Central Full Text
  • [7]Veroneze R, Lopes PS, Guimaraes SE, Silva FF, Lopes MS, Harlizius B et al.. Linkage disequilibrium and haplotype block structure in six commercial pig lines. J Anim Sci. 2013; 91(8):3493-501.
  • [8]Corbin LJ, Blott SC, Swinburne JE, Vaudin M, Bishop SC, Woolliams JA. Linkage disequilibrium and historical effective population size in the Thoroughbred horse. Anim Genet. 2010; 41 Suppl 2:8-15.
  • [9]de Roos AP, Hayes BJ, Spelman RJ, Goddard ME. Linkage disequilibrium and persistence of phase in Holstein-Friesian, Jersey and Angus cattle. Genetics. 2008; 179(3):1503-12.
  • [10]Larmer SG, Sargolzaei M, Schenkel FS. Extent of linkage disequilibrium, consistency of gametic phase, and imputation accuracy within and across Canadian dairy breeds. J Dairy Sci. 2014; 97(5):3128-41.
  • [11]Porto-Neto LR, Kijas JW, Reverter A. The extent of linkage disequilibrium in beef cattle breeds using high-density SNP genotypes. Genet, Selection, Evol: GSE. 2014; 46:22. BioMed Central Full Text
  • [12]Garcia-Gamez E, Sahana G, Gutierrez-Gil B, Arranz JJ. Linkage disequilibrium and inbreeding estimation in Spanish Churra sheep. BMC Genet. 2012; 13:43. BioMed Central Full Text
  • [13]Kijas JW, Porto-Neto L, Dominik S, Reverter A, Bunch R, McCulloch R et al.. Linkage disequilibrium over short physical distances measured in sheep using a high-density SNP chip. Anim Genet. 2014; 45(5):754-7.
  • [14]Carillier C, Larroque H, Palhiere I, Clement V, Rupp R, Robert-Granie C. A first step toward genomic selection in the multi-breed French dairy goat population. J Dairy Sci. 2013; 96(11):7294-305.
  • [15]Sved JA. Linkage disequilibrium and homozygosity of chromosome segments in finite populations. Theor Popul Biol. 1971; 2(2):125-41.
  • [16]Hill WG. Estimation of effective population size from data on linkage disequilibrium. Genet Res. 1981; 38(03):209-16.
  • [17]Hayes BJ, Visscher PM, McPartlan HC, Goddard ME. Novel multilocus measure of linkage disequilibrium to estimate past effective population size. Genome Res. 2003; 13(4):635-43.
  • [18]Dubeuf J-P, Boyazoglu J. An international panorama of goat selection and breeds. Livest Sci. 2009; 120(3):225-31.
  • [19]Malan SW. The improved Boer goat. Small Rumin Res. 2000; 36(2):165-70.
  • [20]Canadian Agri-Food Research Council. Recommended Code of Practice for the Care and Handling of Farm Animals - GOATS. 2003. https://www.nfacc.ca/pdfs/codes/goat_code_of_practice.pdf .Accessed 15 May 2015.
  • [21]Kijas JW, Ortiz JS, McCulloch R, James A, Brice B, Swain B et al.. Genetic diversity and investigation of polledness in divergent goat populations using 52 088 SNPs. Anim Genet. 2013; 44(3):325-35.
  • [22]Wiggans G, Sonstegard T, VanRaden P, Matukumalli L, Schnabel R, Taylor J et al.. Selection of single-nucleotide polymorphisms and quality of genotypes used in genomic evaluation of dairy cattle in the United States and Canada. J Dairy Sci. 2009; 92(7):3431-6.
  • [23]Hill WG, Robertson A. Linkage disequilibrium in finite populations. TAG Theoretical Applied Genet Theoretische und angewandte Genetik. 1968; 38(6):226-31.
  • [24]Lynch M, Walsh B. Genetics and analysis of quantitative traits. Sinauer, Sunderland, Mass; 1998.
  • [25]Lewontin RC. The interaction of selection and linkage. I. General considerations; Heterotic models. Genetics. 1964; 49(1):49-67.
  • [26]Bohmanova J, Sargolzaei M, Schenkel FS. Characteristics of linkage disequilibrium in North American Holsteins. BMC Genomics. 2010; 11:421. BioMed Central Full Text
  • [27]Hayes B, Bowman P, Chamberlain A, Goddard M. Invited review: genomic selection in dairy cattle: progress and challenges. J Dairy Sci. 2009; 92(2):433-43.
  • [28]Alexander DH, Novembre J, Lange K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 2009; 19(9):1655-64.
  • [29]Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics. 2000; 155(2):945-59.
  • [30]Team RCR. A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria; 2012.
  • [31]VanRaden P. Efficient methods to compute genomic predictions. J Dairy Sci. 2008; 91(11):4414-23.
  • [32]Zeder MA, Hesse B. The initial domestication of goats (Capra hircus) in the Zagros mountains 10,000 years ago. Science. 2000; 287(5461):2254-7.
  • [33]Danchin-Burge C, editor. Bilan de variabilité génétique de 9 races de petits ruminants laitiers et à toison. Compte rendu; 2011.
  • [34]Mucha S, Mrode R, Coffey M, Conington J. Estimation of genomic breeding values for milk yield in UK dairy goats. 10th world congress on genetics applied to livestock production. Vancouver, Canada; 2014.
  • [35]Sargolzaei M, Schenkel FS, Jansen GB, Schaeffer LR. Extent of linkage disequilibrium in Holstein cattle in North America. J Dairy Sci. 2008; 91(5):2106-17.
  • [36]Habier D, Tetens J, Seefried FR, Lichtner P, Thaller G. The impact of genetic relationship information on genomic breeding values in German Holstein cattle. Genet, Selection, Evolution : GSE. 2010; 42:5. BioMed Central Full Text
  • [37]Calus MP, Meuwissen TH, de Roos AP, Veerkamp RF. Accuracy of genomic selection using different methods to define haplotypes. Genetics. 2008; 178(1):553-61.
  • [38]Larmer S, Ventura R, Buzanskas ME, Sargolzaei M, Schenkel FS. Assessing admixture by quantifying breed composition to gain historical perspective on dairy cattle in Canada. 10th World Congress on Genetics Applied to Livestock Production, Vancouver, Canada; 2014.
  • [39]Casey N, Van Niekerk W. The Boer goat. I. Origin, adaptability, performance testing, reproduction and milk production. Small Rumin Res. 1988; 1(3):291-302.
  • [40]Huson H, Sonstegard T, Silverstein J, Woodward-Greene M, Masiga C, Muchadeyi F et al.. Genetic and phenotypic characterization of African goat populations to prioritize conservation and production efforts for small-holder farmers in Sub-Saharan africa. 10th World Congress on Genetics Applied to Livestock Production, Vancouver, Canada; 2014.
  • [41]de Roos AP, Hayes BJ, Goddard ME. Reliability of genomic predictions across multiple populations. Genetics. 2009; 183(4):1545-53.
  • [42]Larroque H, Barillet F, Baloche G, Astruc J, Buisson D, Shumbusho F et al.. Toward genomic breeding programs in French dairy sheep and goats. 10th World Congress on Genetics Applied to Livestock Production, Vancouver, Canada; 2014.
  • [43]Meuwissen T. Genetic management of small populations: a review. Acta Agriculturae Scand Section A. 2009; 59(2):71-9.
  文献评价指标  
  下载次数:43次 浏览次数:17次