期刊论文详细信息
BMC Research Notes
Selection of reference genes from two leafhopper species challenged by phytoplasma infection, for gene expression studies by RT-qPCR
Cristina Marzachì1  Domenico Bosco2  Luciana Galetto1 
[1] Istituto di Virologia Vegetale, CNR, Strada delle Cacce 73, 10135 Torino, Italy;Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università degli Studi di Torino, Via Leonardo Da Vinci 44, 10095 Grugliasco, TO, Italy
关键词: Normfinder;    geNorm;    BestKeeper;    Housekeeping genes;    Insect vectors;    Macrosteles quadripunctulatus;    Euscelidius variegatus;    “Candidatus Phytoplasma asteris”;   
Others  :  1141373
DOI  :  10.1186/1756-0500-6-409
 received in 2013-05-10, accepted in 2013-09-19,  发布年份 2013
PDF
【 摘 要 】

Background

Phytoplasmas are phloem-limited phytopathogenic wall-less bacteria and represent a major threat to agriculture worldwide. They are transmitted in a persistent, propagative manner by phloem-sucking Hemipteran insects. For gene expression studies based on mRNA quantification by RT-qPCR, stability of housekeeping genes is crucial. The aim of this study was the identification of reference genes to study the effect of phytoplasma infection on gene expression of two leafhopper vector species. The identified reference genes will be useful tools to investigate differential gene expression of leafhopper vectors upon phytoplasma infection.

Results

The expression profiles of ribosomal 18S, actin, ATP synthase β, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and tropomyosin were determined in two leafhopper vector species (Hemiptera: Cicadellidae), both healthy and infected by “Candidatus Phytoplasma asteris” (chrysanthemum yellows phytoplasma strain, CYP). Insects were analyzed at three different times post acquisition, and expression stabilities of the selected genes were evaluated with BestKeeper, geNorm and Normfinder algorithms. In Euscelidius variegatus, all genes under all treatments were stable and could serve as reference genes. In Macrosteles quadripunctulatus, BestKeeper and Normfinder analysis indicated ATP synthase β, tropomyosin and GAPDH as the most stable, whereas geNorm identified reliable genes only for early stages of infection.

Conclusions

In this study a validation of five candidate reference genes was performed with three algorithms, and housekeeping genes were identified for over time transcript profiling of two leafhopper vector species infected by CYP. This work set up an experimental system to study the molecular basis of phytoplasma multiplication in the insect body, in order to elucidate mechanisms of vector specificity. Most of the sequences provided in this study are new for leafhoppers, which are vectors of economically important plant pathogens. Phylogenetic indications were also drawn from sequence analysis of these genes.

【 授权许可】

   
2013 Galetto et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150327032130636.pdf 364KB PDF download
Figure 1. 48KB Image download
【 图 表 】

Figure 1.

【 参考文献 】
  • [1]Dickinson M, Tuffen M, Hodgetts J: Phytoplasma. In The Phytoplasmas: An Introduction. 938th edition. Edited by Dickinson M, Hodgetts J. Totowa, NJ: Humana Press; 2013:1-14.
  • [2]Sugio A, MacLean AM, Kingdom HN, Grieve VM, Manimekalai R, Hogenhout SA: Diverse targets of phytoplasma effectors: from plant development to defense against insects. Annu Rev Phytopathol 2011, 49:175-195.
  • [3]Kube M, Mitrovic J, Duduk B, Rabus R, Seemüller E: Current view on phytoplasma genomes and encoded metabolism. Sci World J 2012, 2012:185942.
  • [4]Bai X, Zhang J, Ewing A, Miller SA, Jancso Radek A, Shevchenko DV, Tsukerman K, Walunas T, Lapidus A, Campbell JW, Hogenhout SA: Living with genome instability: the adaptation of phytoplasmas to diverse environments of their insect and plant hosts. J Bacteriol 2006, 188:3682-3696.
  • [5]Oshima K, Kakizawa S, Nishigawa H, Jung H-Y, Wei W, Suzuki S, Arashida R, Nakata D, Miyata S, Ugaki M, Namba S: Reductive evolution suggested from the complete genome sequence of a plant-pathogenic phytoplasma. Nat Genet 2004, 36:27-29.
  • [6]Tran-Nguyen LTT, Kube M, Schneider B, Reinhardt R, Gibb KS: Comparative genome analysis of “Candidatus Phytoplasma australiense” (Subgroup tuf-Australia I; rp-A) and “Ca. Phytoplasma asteris” strains OY-M and AY-WB. J Bacteriol 2008, 190:3979-3991.
  • [7]Kube M, Schneider B, Kuhl H, Dandekar T, Heitmann K, Migdoll AM, Reinhardt R, Seemüller E: The linear chromosome of the plant-pathogenic mycoplasma “Candidatus Phytoplasma mali. BMC Genomics 2008, 9:306. BioMed Central Full Text
  • [8]Sugio A, Hogenhout SA: The genome biology of phytoplasma: modulators of plants and insects. Curr Opin Microbiol 2012, 15:247-254.
  • [9]Weintraub PG, Beanland L: Insect vectors of phytoplasmas. Annu Rev Entomol 2006, 51:91-111.
  • [10]Bosco D, D’Amelio R: Phytoplasmas: genomes, plant hosts and vectors. In Transmission specificity and competition of multiple phytoplasmas in the insect vector. Edited by Weintraub PG, Jones P. Wallingford, UK: CABI; 2010:293-308.
  • [11]Foissac X, Wilson MR: Phytoplasmas: genomes, plant hosts, and vectors. In Current and possible future distributions of phytoplasma diseases and their vectors. Edited by Weintraub PG, Jones P. Wallingford, UK: CABI; 2010:309-324.
  • [12]Suzuki S: From the cover: interaction between the membrane protein of a pathogen and insect microfilament complex determines insect-vector specificity. Proc Natl Acad Sci 2006, 103:4252-4257.
  • [13]Galetto L, Bosco D, Balestrini R, Genre A, Fletcher J, Marzachì C: The major antigenic membrane protein of “Candidatus Phytoplasma asteris” selectively interacts with ATP synthase and actin of leafhopper vectors. PLoS ONE 2011, 6:e22571.
  • [14]Dundas J, Ling M: Reference genes for measuring mRNA expression. Theory Biosci 2012, 131:215-223.
  • [15]Derveaux S, Vandesompele J, Hellemans J: How to do successful gene expression analysis using real-time PCR. Methods 2010, 50:227-230.
  • [16]Huggett J, Dheda K, Bustin S, Zumla A: Real-time RT-PCR normalisation; strategies and considerations. Genes Immun 2005, 6:279-284.
  • [17]Lord JC, Hartzer K, Toutges M, Oppert B: Evaluation of quantitative PCR reference genes for gene expression studies in Tribolium castaneum after fungal challenge. J Microbiol Methods 2010, 80:219-221.
  • [18]Paluzzi JP, O’Donnell MJ: Identification, spatial expression analysis and functional characterization of a pyrokinin-1 receptor in the Chagas’ disease vector, Rhodnius prolixus. Mol Cell Endocrinol 2012, 363:36-45.
  • [19]Paim RM, Pereira MH, Di Ponzio R, Rodrigues JO, Guarneri AA, Gontijo NF, Araújo RN: Validation of reference genes for expression analysis in the salivary gland and the intestine of Rhodnius prolixus (Hemiptera, Reduviidae) under different experimental conditions by quantitative real-time PCR. BMC Research Notes 2012, 5:128. BioMed Central Full Text
  • [20]Scharlaken B, De Graaf DC, Goossens K, Brunain M, Peelman LJ, Jacobs FJ: Reference gene selection for insect expression studies using quantitative real-time PCR: the head of the honeybee, Apis mellifera, after a bacterial challenge. J Insect Sci 2008, 8:33.
  • [21]Xu Y, Zhou W, Zhou Y, Wu J, Zhou X: Transcriptome and comparative gene expression analysis of Sogatella furcifera (Horváth) in response to Southern Rice Black-Streaked Dwarf Virus. PLoS ONE 2012, 7:e36238.
  • [22]Li R, Xie W, Wang S, Wu Q, Yang N, Yang X, Pan H, Zhou X, Bai L, Xu B, Zhou X, Zhang Y: Reference gene selection for qRT-PCR analysis in the sweetpotato whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae). PLoS ONE 2013, 8:e53006.
  • [23]Palermo S, Arzone A, Bosco D: Vector-pathogen-host plant relationships of chrysanthemum yellows (CY) phytoplasma and the vector leafhoppers Macrosteles quadripunctulatus and Euscelidius variegatus. Entomol Exp Appl 2001, 99:347-354.
  • [24]Galetto L, Nardi M, Saracco P, Bressan A, Marzachì C, Bosco D: Variation in vector competency depends on chrysanthemum yellows phytoplasma distribution within Euscelidius variegatus. Entomol Exp Appl 2009, 131:200-207.
  • [25]Galetto L, Marzachì C, Demichelis S, Bosco D: Host plant determines the phytoplasma transmission competence of Empoasca decipiens (Hemiptera: Cicadellidae). J Econ Entomol 2011, 104:360-366.
  • [26]Bosco D, Galetto L, Leoncini P, Saracco P, Raccah B, Marzachì C: Interrelationships between “Candidatus Phytoplasma asteris” and its leafhopper vectors (Homoptera: Cicadellidae). J Econ Entomol 2007, 100:1504-1511.
  • [27]Saracco P, Bosco D, Veratti F, Marzachì C: Quantification over time of chrysanthemum yellows phytoplasma (16Sr-I) in leaves and roots of the host plant Chrysanthemum carinatum (Schousboe) following inoculation with its insect vector. Physiol Mol Plant Pathol 2006, 67:212-219.
  • [28]Maroniche GA, Sagadín M, Mongelli VC, Truol GA, Del Vas M: Reference gene selection for gene expression studies using RT-qPCR in virus-infected planthoppers. Virol J 2011, 8:308. BioMed Central Full Text
  • [29]Majerowicz D, Alves-Bezerra M, Logullo R, Fonseca-de-Souza AL, Meyer-Fernandes JR, Braz GRC, Gondim KC: Looking for reference genes for real-time quantitative PCR experiments in Rhodnius prolixus (Hemiptera: Reduviidae). Insect Mol Biol 2011, 20:713-722.
  • [30]Lourenço AP, Mackert A, DosSantos Cristino A, Simões ZLP: Validation of reference genes for gene expression studies in the honey bee, Apis mellifera, by quantitative real-time RT-PCR. Apidologie 2008, 39:372-385.
  • [31]Pfaffl MW, Tichopad A, Prgomet C, Neuvians TP: Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper-Excel-based tool using pair-wise correlations. Biotechnol Lett 2004, 26:509-515.
  • [32]Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F: Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 2002, 3:34.
  • [33]Andersen CL, Jensen JL, Ørntoft TF: Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 2004, 64:5245-5250.
  • [34]Shi X-Q, Guo W-C, Wan P-J, Zhou L-T, Ren X-L, Ahmat T, Fu K-Y, Li G-Q: Validation of reference genes for expression analysis by quantitative real-time PCR in Leptinotarsa decemlineata (Say). BMC Research Notes 2013, 6:93. BioMed Central Full Text
  • [35]Bansal R, Mamidala P, Mian MAR, Mittapalli O, Michel AP: Validation of reference genes for gene expression studies in Aphis glycines (Hemiptera: Aphididae). J Econ Entomol 2012, 105:1432-1438.
  • [36]Horňáková D, Matoušková P, Kindl J, Valterová I, Pichová I: Selection of reference genes for real-time polymerase chain reaction analysis in tissues from Bombus terrestris and Bombus lucorum of different ages. Anal Biochem 2010, 397:118-120.
  • [37]Van Hiel MB, Van Wielendaele P, Temmerman L, Van Soest S, Vuerinckx K, Huybrechts R, Broeck J, Simonet G: Identification and validation of housekeeping genes in brains of the desert locust Schistocerca gregaria under different developmental conditions. BMC Mol Biol 2009, 10:56. BioMed Central Full Text
  • [38]D’Amelio R, Palermo S, Marzachì C, Bosco D: Influence of Chrysanthemum yellows phytoplasma on the fitness of two of its leafhopper vectors, Macrosteles quadripunctulatus and Euscelidius variegatus. Bulletin of Insectology 2008, 61:349-354.
  • [39]Lee I-M: “Candidatus Phytoplasma asteris”, a novel phytoplasma taxon associated with aster yellows and related diseases. Int J Syst Evol Microbiol 2004, 54:1037-1048.
  • [40]Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S: MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011, 28:2731-2739.
  • [41]Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT: The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 2009, 55:611-622.
  • [42]Burns MJ, Nixon GJ, Foy CA, Harris N: Standardisation of data from real-time quantitative PCR methods - evaluation of outliers and comparison of calibration curves. BMC Biotechnol 2005, 5:31. BioMed Central Full Text
  文献评价指标  
  下载次数:22次 浏览次数:23次