期刊论文详细信息
BMC Genomics
Distinct gene signatures in aortic tissue from ApoE-/- mice exposed to pathogens or Western diet
Caroline A Genco4  Robin R Ingalls3  Jane E Freedman1  Frank C Gibson3  Yuriy Alekseyev5  Lee Wetzler2  Lea M Beaulieu1  Connie Slocum2  Samrawit Mekasha3  Xianbao He3  Adam C Gower6  Ellen O Weinberg2  Carolyn D Kramer2 
[1] Department of Medicine, Division of Cardiovascular Medicine, University of Massachusetts Medical School, Worcester, MA, USA;Department of Medicine, Section of Infectious Diseases, Boston University School of Medicine, Boston, MA, USA;Boston Medical Center, Boston, MA, USA;Department of Microbiology, Boston University School of Medicine, Boston, MA, USA;Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston University, Boston, MA, USA;Clinical and Translational Science Institute, Boston University, Boston, MA, USA
关键词: PPAR;    Vulnerable plaque;    Vascular inflammation;    Atherosclerosis;    GSEA;    Gene expression profiling;    Western diet;    Chlamydia pneumoniae;    Porphyromonas gingivalis;    ApoE-/- mice;   
Others  :  1121449
DOI  :  10.1186/1471-2164-15-1176
 received in 2014-08-06, accepted in 2014-12-11,  发布年份 2014
PDF
【 摘 要 】

Background

Atherosclerosis is a progressive disease characterized by inflammation and accumulation of lipids in vascular tissue. Porphyromonas gingivalis (Pg) and Chlamydia pneumoniae (Cp) are associated with inflammatory atherosclerosis in humans. Similar to endogenous mediators arising from excessive dietary lipids, these Gram-negative pathogens are pro-atherogenic in animal models, although the specific inflammatory/atherogenic pathways induced by these stimuli are not well defined. In this study, we identified gene expression profiles that characterize P. gingivalis, C. pneumoniae, and Western diet (WD) at acute and chronic time points in aortas of Apolipoprotein E (ApoE-/-) mice.

Results

At the chronic time point, we observed that P. gingivalis was associated with a high number of unique differentially expressed genes compared to C. pneumoniae or WD. For the top 500 differentially expressed genes unique to each group, we observed a high percentage (76%) that exhibited decreased expression in P. gingivalis-treated mice in contrast to a high percentage (96%) that exhibited increased expression in WD mice. C. pneumoniae treatment resulted in approximately equal numbers of genes that exhibited increased and decreased expression. Gene Set Enrichment Analysis (GSEA) revealed distinct stimuli-associated phenotypes, including decreased expression of mitochondrion, glucose metabolism, and PPAR pathways in response to P. gingivalis but increased expression of mitochondrion, lipid metabolism, carbohydrate and amino acid metabolism, and PPAR pathways in response to C. pneumoniae; WD was associated with increased expression of immune and inflammatory pathways. DAVID analysis of gene clusters identified by two-way ANOVA at acute and chronic time points revealed a set of core genes that exhibited altered expression during the natural progression of atherosclerosis in ApoE-/- mice; these changes were enhanced in P. gingivalis-treated mice but attenuated in C. pneumoniae-treated mice. Notable differences in the expression of genes associated with unstable plaques were also observed among the three pro-atherogenic stimuli.

Conclusions

Despite the common outcome of P. gingivalis, C. pneumoniae, and WD on the induction of vascular inflammation and atherosclerosis, distinct gene signatures and pathways unique to each pro-atherogenic stimulus were identified. Our results suggest that pathogen exposure results in dysregulated cellular responses that may impact plaque progression and regression pathways.

【 授权许可】

   
2015 Kramer et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150212023044600.pdf 1637KB PDF download
Figure 5. 127KB Image download
Figure 4. 111KB Image download
Figure 3. 60KB Image download
Figure 2. 108KB Image download
Figure 1. 63KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Hansson GK: Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med 2005, 352(16):1685-1695.
  • [2]Kronzon I, Tunick PA: Aortic atherosclerotic disease and stroke. Circulation 2006, 114(1):63-75.
  • [3]Puri R, Nissen SE, Libby P, Shao M, Ballantyne CM, Barter PJ, Chapman MJ, Erbel R, Raichlen JS, Uno K, Kataoka Y, Nicholls SJ: C-reactive protein, but not low-density lipoprotein cholesterol levels, associate with coronary atheroma regression and cardiovascular events after maximally intensive statin therapy. Circulation 2013, 128(22):2395-2403.
  • [4]Fleg JL, Forman DE, Berra K, Bittner V, Blumenthal JA, Chen MA, Cheng S, Kitzman DW, Maurer MS, Rich MW, Shen WK, Williams MA, Zieman SJ: Secondary prevention of atherosclerotic cardiovascular disease in older adults: a scientific statement from the American Heart Association. Circulation 2013, 128(22):2422-2446.
  • [5]Kiechl S, Egger G, Mayr M, Wiedermann CJ, Bonora E, Oberhollenzer F, Muggeo M, Xu Q, Wick G, Poewe W, Willeit J: Chronic infections and the risk of carotid atherosclerosis: prospective results from a large population study. Circulation 2001, 103(8):1064-1070.
  • [6]Li L, Messas E, Batista EL Jr, Levine RA, Amar S: Porphyromonas gingivalis infection accelerates the progression of atherosclerosis in a heterozygous apolipoprotein E-deficient murine model. Circulation 2002, 105(7):861-867.
  • [7]Maekawa T, Takahashi N, Tabeta K, Aoki Y, Miyashita H, Miyauchi S, Miyazawa H, Nakajima T, Yamazaki K: Chronic oral infection with Porphyromonas gingivalis accelerates atheroma formation by shifting the lipid profile. PLoS One 2011, 6(5):e20240.
  • [8]Hayashi C, Papadopoulos G, Gudino CV, Weinberg EO, Barth KR, Madrigal AG, Chen Y, Ning H, LaValley M, Gibson FC 3rd, Hamilton JA, Genco CA: Protective role for TLR4 signaling in atherosclerosis progression as revealed by infection with a common oral pathogen. J Immunol 2012, 189(7):3681-3688.
  • [9]Gibson FC 3rd, Hong C, Chou HH, Yumoto H, Chen J, Lien E, Wong J, Genco CA: Innate immune recognition of invasive bacteria accelerates atherosclerosis in apolipoprotein E-deficient mice. Circulation 2004, 109(22):2801-2806.
  • [10]Hayashi C, Viereck J, Hua N, Phinikaridou A, Madrigal AG, Gibson FC 3rd, Hamilton JA, Genco CA: Porphyromonas gingivalis accelerates inflammatory atherosclerosis in the innominate artery of ApoE deficient mice. Atherosclerosis 2011, 215(1):52-59.
  • [11]Chen S, Shimada K, Zhang W, Huang G, Crother TR, Arditi M: IL-17A is proatherogenic in high-fat diet-induced and Chlamydia pneumoniae infection-accelerated atherosclerosis in mice. J Immunol 2010, 185(9):5619-5627.
  • [12]Naiki Y, Sorrentino R, Wong MH, Michelsen KS, Shimada K, Chen S, Yilmaz A, Slepenkin A, Schroder NW, Crother TR, Bulut Y, Doherty TM, Bradley M, Shaposhnik Z, Peterson EM, Tontonoz P, Shah PK, Arditi M: TLR/MyD88 and liver X receptor alpha signaling pathways reciprocally control Chlamydia pneumoniae-induced acceleration of atherosclerosis. J Immunol 2008, 181(10):7176-7185.
  • [13]Campbell LA, Lee AW, Rosenfeld ME, Kuo CC: Chlamydia pneumoniae induces expression of pro-atherogenic factors through activation of the lectin-like oxidized LDL receptor-1. Pathog Dis 2013, 69(1):1-6.
  • [14]Player MS, Mainous AG 3rd, Everett CJ, Diaz VA, Knoll ME, Wright RU: Chlamydia pneumoniae and progression of subclinical atherosclerosis. Eur J Prev Cardiol 2012, 21(5):559-565.
  • [15]Kreutmayer S, Csordas A, Kern J, Maass V, Almanzar G, Offterdinger M, Ollinger R, Maass M, Wick G: Chlamydia pneumoniae infection acts as an endothelial stressor with the potential to initiate the earliest heat shock protein 60-dependent inflammatory stage of atherosclerosis. Cell Stress Chaperones 2013, 18(3):259-268.
  • [16]Honarmand H: Atherosclerosis Induced by Chlamydophila pneumoniae: a controversial theory. Interdiscip Perspect Infect Dis 2013, 2013:941392.
  • [17]Desvarieux M, Demmer RT, Rundek T, Boden-Albala B, Jacobs DR Jr, Sacco RL, Papapanou PN: Periodontal microbiota and carotid intima-media thickness: the Oral Infections and Vascular Disease Epidemiology Study (INVEST). Circulation 2005, 111(5):576-582.
  • [18]Padilla C, Lobos O, Hubert E, Gonzalez C, Matus S, Pereira M, Hasbun S, Descouvieres C: Periodontal pathogens in atheromatous plaques isolated from patients with chronic periodontitis. J Periodontal Res 2006, 41(4):350-353.
  • [19]Haraszthy VI, Zambon JJ, Trevisan M, Zeid M, Genco RJ: Identification of periodontal pathogens in atheromatous plaques. J Periodontol 2000, 71(10):1554-1560.
  • [20]Modi DK, Chopra VS, Bhau U: Rheumatoid arthritis and periodontitis: biological links and the emergence of dual purpose therapies. Indian J Dent Res 2009, 20(1):86-90.
  • [21]Hajishengallis G: Porphyromonas gingivalis-host interactions: open war or intelligent guerilla tactics? Microbes Infect 2009, 11(6–7):637-645.
  • [22]Darveau RP, Hajishengallis G, Curtis MA: Porphyromonas gingivalis as a potential community activist for disease. J Dent Res 2012, 91(9):816-820.
  • [23]Gibson FC 3rd, Ukai T, Genco CA: Engagement of specific innate immune signaling pathways during Porphyromonas gingivalis induced chronic inflammation and atherosclerosis. Front Biosci 2008, 13:2041-2059.
  • [24]Hayashi C, Gudino CV, Gibson FC 3rd, Genco CA: Review: Pathogen-induced inflammation at sites distant from oral infection: bacterial persistence and induction of cell-specific innate immune inflammatory pathways. Mol Oral Microbiol 2010, 25(5):305-316.
  • [25]Chlamydophila pneumoniae infection. Centers for Disease Control http://www.cdc.gov/pneumonia/atypical/chlamydophila.html webcite
  • [26]Papadodima O, Sirsjo A, Kolisis FN, Chatziioannou A: Application of an integrative computational framework in trancriptomic data of atherosclerotic mice suggests numerous molecular players. Adv Bioinformatics 2012, 2012:453513.
  • [27]Jawien J: The role of an experimental model of atherosclerosis: apoE-knockout mice in developing new drugs against atherogenesis. Curr Pharm Biotechnol 2012, 13(13):2435-2439.
  • [28]Jawien J, Nastalek P, Korbut R: Mouse models of experimental atherosclerosis. J Physiol Pharmacol 2004, 55(3):503-517.
  • [29]Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP: Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 2005, 102(43):15545-15550.
  • [30]Mootha VK, Lindgren CM, Eriksson KF, Subramanian A, Sihag S, Lehar J, Puigserver P, Carlsson E, Ridderstrale M, Laurila E, Houstis N, Daly MJ, Patterson N, Mesirov JP, Golub TR, Tamayo P, Spiegelman B, Lander ES, Hirschhorn JN, Altshuler D, Groop LC: PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet 2003, 34(3):267-273.
  • [31]Subramanian A, Kuehn H, Gould J, Tamayo P, Mesirov JP: GSEA-P: a desktop application for Gene Set Enrichment Analysis. Bioinformatics 2007, 23(23):3251-3253.
  • [32]Chen YC, Bui AV, Diesch J, Manasseh R, Hausding C, Rivera J, Haviv I, Agrotis A, Htun NM, Jowett J, Hagemeyer CE, Hannan RD, Bobik A, Peter K: A novel mouse model of atherosclerotic plaque instability for drug testing and mechanistic/therapeutic discoveries using gene and microRNA expression profiling. Circ Res 2013, 113(3):252-265.
  • [33]Moore KJ, Sheedy FJ, Fisher EA: Macrophages in atherosclerosis: a dynamic balance. Nat Rev Immunol 2013, 13(10):709-721.
  • [34]Edfeldt K, Swedenborg J, Hansson GK, Yan ZQ: Expression of toll-like receptors in human atherosclerotic lesions: a possible pathway for plaque activation. Circulation 2002, 105(10):1158-1161.
  • [35]Xu XH, Shah PK, Faure E, Equils O, Thomas L, Fishbein MC, Luthringer D, Xu XP, Rajavashisth TB, Yano J, Kaul S, Arditi M: Toll-like receptor-4 is expressed by macrophages in murine and human lipid-rich atherosclerotic plaques and upregulated by oxidized LDL. Circulation 2001, 104(25):3103-3108.
  • [36]Bjorkbacka H, Kunjathoor VV, Moore KJ, Koehn S, Ordija CM, Lee MA, Means T, Halmen K, Luster AD, Golenbock DT, Freeman MW: Reduced atherosclerosis in MyD88-null mice links elevated serum cholesterol levels to activation of innate immunity signaling pathways. Nat Med 2004, 10(4):416-421.
  • [37]Higashimori M, Tatro JB, Moore KJ, Mendelsohn ME, Galper JB, Beasley D: Role of toll-like receptor 4 in intimal foam cell accumulation in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 2011, 31(1):50-57.
  • [38]Michelsen KS, Wong MH, Shah PK, Zhang W, Yano J, Doherty TM, Akira S, Rajavashisth TB, Arditi M: Lack of Toll-like receptor 4 or myeloid differentiation factor 88 reduces atherosclerosis and alters plaque phenotype in mice deficient in apolipoprotein E. Proc Natl Acad Sci U S A 2004, 101(29):10679-10684.
  • [39]Mullick AE, Tobias PS, Curtiss LK: Modulation of atherosclerosis in mice by Toll-like receptor 2. J Clin Invest 2005, 115(11):3149-3156.
  • [40]Liu X, Ukai T, Yumoto H, Davey M, Goswami S, Gibson FC 3rd, Genco CA: Toll-like receptor 2 plays a critical role in the progression of atherosclerosis that is independent of dietary lipids. Atherosclerosis 2008, 196(1):146-154.
  • [41]Jain S, Coats SR, Chang AM, Darveau RP: A novel class of lipoprotein lipase-sensitive molecules mediates Toll-like receptor 2 activation by Porphyromonas gingivalis. Infect Immun 2013, 81(4):1277-1286.
  • [42]Nichols FC, Bajrami B, Clark RB, Housley W, Yao X: Free lipid A isolated from Porphyromonas gingivalis lipopolysaccharide is contaminated with phosphorylated dihydroceramide lipids: recovery in diseased dental samples. Infect Immun 2012, 80(2):860-874.
  • [43]Miller SI, Ernst RK, Bader MW: LPS, TLR4 and infectious disease diversity. Nat Rev Microbiol 2005, 3(1):36-46.
  • [44]Coats SR, Pham TT, Bainbridge BW, Reife RA, Darveau RP: MD-2 mediates the ability of tetra-acylated and penta-acylated lipopolysaccharides to antagonize Escherichia coli lipopolysaccharide at the TLR4 signaling complex. J Immunol 2005, 175(7):4490-4498.
  • [45]Reife RA, Coats SR, Al-Qutub M, Dixon DM, Braham PA, Billharz RJ, Howald WN, Darveau RP: Porphyromonas gingivalis lipopolysaccharide lipid A heterogeneity: differential activities of tetra- and penta-acylated lipid A structures on E-selectin expression and TLR4 recognition. Cell Microbiol 2006, 8(5):857-868.
  • [46]Slocum C, Coats SR, Hua N, Kramer C, Papadopoulos G, Weinberg EO, Gudino CV, Hamilton JA, Darveau RP, Genco CA: Distinct lipid a moieties contribute to pathogen-induced site-specific vascular inflammation. PLoS Pathog 2014, 10(7):e1004215.
  • [47]Prebeck S, Kirschning C, Durr S, da Costa C, Donath B, Brand K, Redecke V, Wagner H, Miethke T: Predominant role of toll-like receptor 2 versus 4 in Chlamydia pneumoniae-induced activation of dendritic cells. J Immunol 2001, 167(6):3316-3323.
  • [48]Beatty WL, Morrison RP, Byrne GI: Persistent chlamydiae: from cell culture to a paradigm for chlamydial pathogenesis. Microbiol Rev 1994, 58(4):686-699.
  • [49]Blasi F, Centanni S, Allegra L: Chlamydia pneumoniae: crossing the barriers? Eur Respir J 2004, 23(4):499-500.
  • [50]Kalayoglu MV, Indrawati ᅟ, Morrison RP, Morrison SG, Yuan Y, Byrne GI: Chlamydial virulence determinants in atherogenesis: the role of chlamydial lipopolysaccharide and heat shock protein 60 in macrophage-lipoprotein interactions. J Infect Dis 2000, 181(Suppl 3):S483-S489.
  • [51]Cao F, Castrillo A, Tontonoz P, Re F, Byrne GI: Chlamydia pneumoniae–induced macrophage foam cell formation is mediated by Toll-like receptor 2. Infect Immun 2007, 75(2):753-759.
  • [52]Bjorkegren JL, Hagg S, Talukdar HA, Foroughi Asl H, Jain RK, Cedergren C, Shang MM, Rossignoli A, Takolander R, Melander O, Hamsten A, Michoel T, Skogsberg J: Plasma cholesterol-induced lesion networks activated before regression of early, mature, and advanced atherosclerosis. PLoS Genet 2014, 10(2):e1004201.
  • [53]Madamanchi NR, Runge MS: Mitochondrial dysfunction in atherosclerosis. Circ Res 2007, 100(4):460-473.
  • [54]Phinikaridou A, Andia ME, Passacquale G, Ferro A, Botnar RM: Noninvasive MRI monitoring of the effect of interventions on endothelial permeability in murine atherosclerosis using an albumin-binding contrast agent. J Am Heart Assoc 2013, 2(5):e000402.
  • [55]Erridge C: Endogenous ligands of TLR2 and TLR4: agonists or assistants? J Leukoc Biol 2010, 87(6):989-999.
  • [56]Weinberg EO, Genco CA: Directing TRAF-ic: cell-specific TRAF6 signaling in chronic inflammation and atherosclerosis. Circulation 2012, 126(14):1678-1680.
  • [57]Hyvarinen K, Tuomainen AM, Laitinen S, Alfthan G, Salminen I, Leinonen M, Saikku P, Kovanen PT, Jauhiainen M, Pussinen PJ: The effect of proatherogenic pathogens on adipose tissue transcriptome and fatty acid distribution in apolipoprotein E-deficient mice. BMC Genomics 2013, 14:709. BioMed Central Full Text
  • [58]Hayashi C, Madrigal AG, Liu X, Ukai T, Goswami S, Gudino CV, Gibson FC 3rd, Genco CA: Pathogen-mediated inflammatory atherosclerosis is mediated in part via Toll-like receptor 2-induced inflammatory responses. J Innate Immun 2010, 2(4):334-343.
  • [59]Cao C, Zhu Y, Chen W, Li L, Qi Y, Wang X, Zhao Y, Wan X, Chen X: IKKepsilon knockout prevents high fat diet induced arterial atherosclerosis and NF-kappaB signaling in mice. PLoS One 2013, 8(5):e64930.
  • [60]Lee J, Baldwin WM 3rd, Lee CY, Desiderio S: Stat3beta mitigates development of atherosclerosis in apolipoprotein E-deficient mice. J Mol Med (Berl) 2013, 91(8):965-976.
  • [61]Wang H, Zhu HQ, Wang F, Zhou Q, Gui SY, Wang Y: MicroRNA-1 prevents high-fat diet-induced endothelial permeability in apoE knock-out mice. Mol Cell Biochem 2013, 378(1–2):153-159.
  • [62]Pi X, Lockyer P, Dyer LA, Schisler JC, Russell B, Carey S, Sweet DT, Chen Z, Tzima E, Willis MS, Homeister JW, Moser M, Patterson C: Bmper inhibits endothelial expression of inflammatory adhesion molecules and protects against atherosclerosis. Arterioscler Thromb Vasc Biol 2012, 32(9):2214-2222.
  • [63]Moazed TC, Campbell LA, Rosenfeld ME, Grayston JT, Kuo CC: Chlamydia pneumoniae infection accelerates the progression of atherosclerosis in apolipoprotein E-deficient mice. J Infect Dis 1999, 180(1):238-241.
  • [64]Moazed TC, Kuo C, Grayston JT, Campbell LA: Murine models of Chlamydia pneumoniae infection and atherosclerosis. J Infect Dis 1997, 175(4):883-890.
  • [65]Papadopoulos G, Kramer CD, Slocum CS, Weinberg EO, Hua N, Gudino CV, Hamilton JA, Genco CA: A mouse model for pathogen-induced chronic inflammation at local and systemic sites. J Vis Exp 2014, 90:e51556.
  • [66]He X, Mekasha S, Mavrogiorgos N, Fitzgerald KA, Lien E, Ingalls RR: Inflammation and fibrosis during Chlamydia pneumoniae infection is regulated by IL-1 and the NLRP3/ASC inflammasome. J Immunol 2010, 184(10):5743-5754.
  • [67]He X, Nair A, Mekasha S, Alroy J, O'Connell CM, Ingalls RR: Enhanced virulence of Chlamydia muridarum respiratory infections in the absence of TLR2 activation. PLoS One 2011, 6(6):e20846.
  • [68]Storey JD, Tibshirani R: Statistical significance for genomewide studies. Proc Natl Acad Sci U S A 2003, 100(16):9440-9445.
  • [69]Storey JD, Tibshirani R: Statistical methods for identifying differentially expressed genes in DNA microarrays. Methods Mol Biol 2003, 224:149-157.
  • [70]Smyth GK: Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 2004, 3:Article3.
  • [71]Huang da W, Sherman BT, Zheng X, Yang J, Imamichi T, Stephens R, Lempicki RA: Extracting biological meaning from large gene lists with DAVID. Curr Protoc Bioinformatics 2012., 2713.11.1-13.11.13
  • [72]da Huang W, Sherman BT, Lempicki RA: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 2009, 4(1):44-57.
  • [73]Kramer CD, Weinberg EO: Genome Data from Series Record ID GSE60086. 2014. http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?token=mvchagcyhfgtrit&acc=GSE60086 webcite
  文献评价指标  
  下载次数:26次 浏览次数:13次