期刊论文详细信息
BMC Evolutionary Biology
The organization and evolution of the Responder satellite in species of the Drosophila melanogaster group: dynamic evolution of a target of meiotic drive
Amanda M Larracuente1 
[1] Department of Biology, River campus, University of Rochester, 480 Hutchison Hall, Rochester 14627, NY, USA
关键词: Concerted evolution;    Meiotic drive;    Drosophila;    Responder;    Segregation Distorter;    Satellite DNA;   
Others  :  1117826
DOI  :  10.1186/s12862-014-0233-9
 received in 2014-10-21, accepted in 2014-11-05,  发布年份 2014
PDF
【 摘 要 】

Background

Satellite DNA can make up a substantial fraction of eukaryotic genomes and has roles in genome structure and chromosome segregation. The rapid evolution of satellite DNA can contribute to genomic instability and genetic incompatibilities between species. Despite its ubiquity and its contribution to genome evolution, we currently know little about the dynamics of satellite DNA evolution. The Responder (Rsp) satellite DNA family is found in the pericentric heterochromatin of chromosome 2 of Drosophila melanogaster. Rsp is well-known for being the target of Segregation Distorter (SD)— an autosomal meiotic drive system in D. melanogaster. I present an evolutionary genetic analysis of the Rsp family of repeats in D. melanogaster and its closely-related species in the melanogaster group (D. simulans, D. sechellia, D. mauritiana, D. erecta, and D. yakuba) using a combination of available BAC sequences, whole genome shotgun Sanger reads, Illumina short read deep sequencing, and fluorescence in situ hybridization.

Results

I show that Rsp repeats have euchromatic locations throughout the D. melanogaster genome, that Rsp arrays show evidence for concerted evolution, and that Rsp repeats exist outside of D. melanogaster, in the melanogaster group. The repeats in these species are considerably diverged at the sequence level compared to D. melanogaster, and have a strikingly different genomic distribution, even between closely-related sister taxa.

Conclusions

The genomic organization of the Rsp repeat in the D. melanogaster genome is complex—it exists of large blocks of tandem repeats in the heterochromatin and small blocks of tandem repeats in the euchromatin. My discovery of heterochromatic Rsp-like sequences outside of D. melanogaster suggests that SD evolved after its target satellite and that the evolution of the Rsp satellite family is highly dynamic over a short evolutionary time scale (<240,000 years).

【 授权许可】

   
2014 Larracuente; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150206010319401.pdf 3248KB PDF download
Figure 5. 21KB Image download
Figure 4. 30KB Image download
Figure 3. 47KB Image download
Figure 2. 86KB Image download
Figure 1. 29KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Orgel LE, Crick FH: Selfish DNA: the ultimate parasite. Nature 1980, 284(5757):604-607.
  • [2]Doolittle WF, Sapienza C: Selfish genes, the phenotype paradigm and genome evolution. Nature 1980, 284(5757):601-603.
  • [3]Ohno S: So much “junk” DNA in our genome. Brookhaven Symp Biol 1972, 23:366-370.
  • [4]Szybalski W: Use of cesium sulfate for equilibrium density gradient centrifugation. Methods Enzymol 1968, 12B:330-360.
  • [5]Yunis JJ, Yasmineh WG: Heterochromatin, satellite DNA, and cell function. Structural DNA of eucaryotes may support and protect genes and aid in speciation. Science 1971, 174(4015):1200-1209.
  • [6]Sandler L, Novitski E: Meiotic drive as an evolutionary force. Am Nat 1957, 91(857):105-110.
  • [7]Sandler L, Hiraizumi Y, Sandler I: Meiotic drive in natural populations of Drosophila melanogaster. I. the cytogenetic basis of segregation-distortion. Genetics 1959, 44(2):233-250.
  • [8]Pimpinelli S, Dimitri P: Cytogenetic analysis of segregation distortion in Drosophila melanogaster: the cytological organization of the Responder (Rsp) locus. Genetics 1989, 121(4):765-772.
  • [9]Wu CI, Lyttle TW, Wu ML, Lin GF: Association between a satellite DNA sequence and the Responder of Segregation Distorter in D. melanogaster. Cell 1988, 54(2):179-189.
  • [10]Larracuente AM, Presgraves DC: The selfish Segregation Distorter gene complex of Drosophila melanogaster. Genetics 2012, 192(1):33-53.
  • [11]Houtchens K, Lyttle TW: Responder (Rsp) alleles in the Segregation Distorter (SD) system of meiotic drive in Drosophila may represent a complex family of satellite repeat sequences. Genetica 2003, 117(2–3):291-302.
  • [12]Moschetti R, Caizzi R, Pimpinelli S: Segregation distortion in Drosophila melanogaster: genomic organization of Responder sequences. Genetics 1996, 144(4):1365-1371.
  • [13]McAllister BF, Werren JH: Evolution of tandemly repeated sequences: What happens at the end of an array? J Mol Evol 1999, 48(4):469-481.
  • [14]Kuhn GC, Kuttler H, Moreira-Filho O, Heslop-Harrison JS: The 1.688 repetitive DNA of Drosophila: concerted evolution at different genomic scales and association with genes. Mol Biol Evol 2012, 29(1):7-11.
  • [15]Eickbush TH, Eickbush DG: Finely orchestrated movements: evolution of the ribosomal RNA genes. Genetics 2007, 175(2):477-485.
  • [16]Smith GP: Evolution of repeated DNA sequences by unequal crossover. Science 1976, 191(4227):528-535.
  • [17]Dover G: A Molecular drive through evolution. Bioscience 1982, 32(6):526-533.
  • [18]Dover G: Concerted evolution, molecular drive and natural selection. Curr Biol 1994, 4(12):1165-1166.
  • [19]Elder JF Jr, Turner BJ: Concerted evolution of repetitive DNA sequences in eukaryotes. Q Rev Biol 1995, 70(3):297-320.
  • [20]Liao D: Concerted evolution: molecular mechanism and biological implications. Am J Hum Genet 1999, 64(1):24-30.
  • [21]Hoskins RA, Smith CD, Carlson JW, Carvalho AB, Halpern A, Kaminker JS, Kennedy C, Mungall CJ, Sullivan BA, Sutton GG, Yasuhara JC, Wakimoto BT, Myers EW, Celniker SE, Rubin GM, Karpen GH: Heterochromatic sequences in a Drosophila whole-genome shotgun assembly. Genome Biol 2002, 3(12):RESEARCH0085. BioMed Central Full Text
  • [22]Caizzi R, Caggese C, Pimpinelli S: Bari-1, a new transposon-like family in Drosophila melanogaster with a unique heterochromatic organization. Genetics 1993, 133(2):335-345.
  • [23]Larracuente AM: Data from: the organization and evolution of the Responder satellite in species of the Drosophila melanogaster group: dynamic evolution of a target of meiotic drive.Dryad Digital Repository. doi:10.5061/dryad.3sh6d.
  • [24]Cabot EL, Doshi P, Wu ML, Wu CI: Population genetics of tandem repeats in centromeric heterochromatin: unequal crossing over and chromosomal divergence at the Responder locus of Drosophila melanogaster. Genetics 1993, 135(2):477-487.
  • [25]Temin RG, Ganetzky B, Powers PA, Lyttle TW, Pimpinelli S, Wu C-I, Hiraizumi Y: Segregation Distorter (SD) in Drosophila melanogaster: genetic and molecular analysis. Am Nat 1991, 137:287-331.
  • [26]Osoegawa K, Vessere GM, Li Shu C, Hoskins RA, Abad JP, de Pablos B, Villasante A, de Jong PJ: BAC clones generated from sheared DNA. Genomics 2007, 89(2):291-299.
  • [27]Hoskins RA, Carlson JW, Kennedy C, Acevedo D, Evans-Holm M, Frise E, Wan KH, Park S, Mendez-Lago M, Rossi F, Villasante A, Dimitri P, Karpen GH, Celniker SE: Sequence finishing and mapping of Drosophila melanogaster heterochromatin. Science 2007, 316(5831):1625-1628.
  • [28]Clark AG, Eisen MB, Smith DR, Bergman CM, Oliver B, Markow TA, Kaufman TC, Kellis M, Gelbart W, Iyer VN, Pollard DA, Sackton TB, Larracuente AM, Singh ND, Abad JP, Abt DN, Adryan B, Aguade M, Akashi H, Anderson WW, Aquadro CF, Ardell DH, Arguello R, Artieri CG, Barbash DA, Barker D, Barsanti P, Batterham P, Batzoglou S, Begun D, et al.: Evolution of genes and genomes on the Drosophila phylogeny. Nature 2007, 450(7167):203-218.
  • [29]Britten RJ, Kohne DE: Repeated sequences in DNA. Hundreds of thousands of copies of DNA sequences have been incorporated into the genomes of higher organisms. Science 1968, 161(3841):529-540.
  • [30]Hatch FT, Mazrimas JA: Fractionation and characterization of satellite DNAs of Kangaroo Rat (Dipodomys-Ordii). Nucleic Acids Res 1974, 1(4):559-575.
  • [31]Ugarkovic D, Petitpierre E, Juan C, Plohl M: Satellite DNAs in Tenebrionid species - structure, organization and evolution. Croat Chem Acta 1995, 68(3):627-638.
  • [32]Zhu Q, Pao GM, Huynh AM, Suh H, Tonnu N, Nederlof PM, Gage FH, Verma IM: BRCA1 tumour suppression occurs via heterochromatin-mediated silencing. Nature 2011, 477(7363):179-184.
  • [33]Zhang P: A trans-activator on the Drosophila Y chromosome regulates gene expression in the male germ line. Genetica 2000, 109:141-150.
  • [34]Pezer Z, Brajkovic J, Feliciello I, Ugarkovic D: Transcription of satellite DNAs in insects. Prog Mol Subcell Biol 2011, 51:161-178.
  • [35]Lemos B, Araripe LO, Hartl DL: Polymorphic Y chromosomes harbor cryptic variation with manifold functional consequences. Science 2008, 319(5859):91-93.
  • [36]Hughes SE, Gilliland WD, Cotitta JL, Takeo S, Collins KA, Hawley RS: Heterochromatic threads connect oscillating chromosomes during prometaphase I in Drosophila oocytes. PLoS Genet 2009, 5(1):e1000348.
  • [37]He B, Caudy A, Parsons L, Rosebrock A, Pane A, Raj S, Wieschaus E: Mapping the pericentric heterochromatin by comparative genomic hybridization analysis and chromosome deletions in Drosophila melanogaster. Genome Res 2012, 22(12):2507-2519.
  • [38]Ferree PM, Barbash DA: Species-specific heterochromatin prevents mitotic chromosome segregation to cause hybrid lethality in Drosophila. PLoS Biol 2009, 7(10):e1000234.
  • [39]Dernburg AF, Sedat JW, Hawley RS: Direct evidence of a role for heterochromatin in meiotic chromosome segregation. Cell 1996, 86(1):135-146.
  • [40]Csink AK, Henikoff S: Something from nothing: the evolution and utility of satellite repeats. Trends Genet 1998, 14(5):200-204.
  • [41]Chippindale AK, Rice WR: Y chromosome polymorphism is a strong determinant of male fitness in Drosophila melanogaster. Proc Natl Acad Sci U S A 2001, 98(10):5677-5682.
  • [42]Cattani MV, Presgraves DC: Incompatibility between X chromosome factor and pericentric heterochromatic region causes lethality in hybrids between Drosophila melanogaster and its sibling species. Genetics 2012, 191(2):549-559.
  • [43]Brennecke J, Aravin AA, Stark A, Dus M, Kellis M, Sachidanandam R, Hannon GJ: Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila. Cell 2007, 128(6):1089-1103.
  • [44]Bayes JJ, Malik HS: Altered heterochromatin binding by a hybrid sterility protein in Drosophila sibling species. Science 2009, 326(5959):1538-1541.
  • [45]Pezer Z, Ugarkovic D: RNA Pol II promotes transcription of centromeric satellite DNA in beetles. PLoS ONE 2008, 3(2):e1594.
  • [46]Sun X, Wahlstrom J, Karpen G: Molecular structure of a functional Drosophila centromere. Cell 1997, 91(7):1007-1019.
  • [47]Henikoff S, Ahmad K, Malik HS: The centromere paradox: stable inheritance with rapidly evolving DNA. Science 2001, 293(5532):1098-1102.
  • [48]Walker PM: Origin of satellite DNA. Nature 1971, 229(5283):306-308.
  • [49]Hoskins RA, Nelson CR, Berman BP, Laverty TR, George RA, Ciesiolka L, Naeemuddin M, Arenson AD, Durbin J, David RG, Tabor PE, Bailey MR, DeShazo DR, Catanese J, Mammoser A, Osoegawa K, de Jong PJ, Celniker SE, Gibbs RA, Rubin GM, Scherer SE: A BAC-based physical map of the major autosomes of Drosophila melanogaster. Science 2000, 287(5461):2271-2274.
  • [50]Gemayel R, Vinces MD, Legendre M, Verstrepen KJ: Variable tandem repeats accelerate evolution of coding and regulatory sequences. Annu Rev Genet 2010, 44:445-477.
  • [51]Hiraizumi Y, Nakazima K: Deviant sex ratio associated with segregation distortion in Drosophila melanogaster. Genetics 1967, 55(4):681-697.
  • [52]Kataoka Y: A genetic system modifying segregation distortion in a natural population of Drosophila melanogaster in Japan. Jap J Genet 1967, 42:327-337.
  • [53]Hiraizumi Y, Thomas AM: Suppressor systems of Segregation Distorter (SD) Chromosomes in Natural Populations of Drosophila melanogaster. Genetics 1984, 106(2):279-292.
  • [54]Hiraizumi Y, Albracht JM, Albracht BC: X-linked elements associated with negative segregation distortion in the SD system of Drosophila melanogaster. Genetics 1994, 138(1):145-152.
  • [55]Gell SL, Reenan RA: Mutations to the piRNA pathway component aubergine enhance meiotic drive of segregation distorter in Drosophila melanogaster. Genetics 2013, 193(3):771-784.
  • [56]Tao Y, Araripe L, Kingan SB, Ke Y, Xiao H, Hartl DL: A sex-ratio meiotic drive system in Drosophila simulans. II: an X-linked distorter. PLoS Biol 2007, 5(11):e293.
  • [57]Pezer Z, Ugarkovic D: Transcription of pericentromeric heterochromatin in beetles–satellite DNAs as active regulatory elements. Cytogenet Genome Res 2009, 124(3–4):268-276.
  • [58]Carone DM, Longo MS, Ferreri GC, Hall L, Harris M, Shook N, Bulazel KV, Carone BR, Obergfell C, O'Neill MJ, O'Neill RJ: A new class of retroviral and satellite encoded small RNAs emanates from mammalian centromeres. Chromosoma 2009, 118(1):113-125.
  • [59]Saito K, Nishida KM, Mori T, Kawamura Y, Miyoshi K, Nagami T, Siomi H, Siomi MC: Specific association of Piwi with rasiRNAs derived from retrotransposon and heterochromatic regions in the Drosophila genome. Gene Dev 2006, 20(16):2214-2222.
  • [60]Powers PA, Ganetzky B: On the components of segregation distortion in Drosophila melanogaster. V Molecular analysis of the Sd locus. Genetics 1991, 129(1):133-144.
  • [61]Presgraves DC, Gerard PR, Cherukuri A, Lyttle TW: Large-scale selective sweep among Segregation Distorter chromosomes in African populations of Drosophila melanogaster. PLoS Genet 2009, 5(5):e1000463.
  • [62]Levinson G, Gutman GA: Slipped-strand mispairing: a major mechanism for DNA sequence evolution. Mol Biol Evol 1987, 4(3):203-221.
  • [63]Ugarkovic D, Plohl M: Variation in satellite DNA profiles–causes and effects. EMBO J 2002, 21(22):5955-5959.
  • [64]Garrigan D, Kingan SB, Geneva AJ, Andolfatto P, Clark AG, Thornton KR, Presgraves DC: Genome sequencing reveals complex speciation in the Drosophila simulans clade. Genome Res 2012, 22(8):1499-1511.
  • [65]Temin RG, Marthas M: Factors influencing the effect of segregation distortion in natural populations of Drosophila melanogaster. Genetics 1984, 107(3):375-393.
  • [66]Adams MD, Celniker SE, Holt RA, Evans CA, Gocayne JD, Amanatides PG, Scherer SE, Li PW, Hoskins RA, Galle RF, George RA, Lewis SE, Richards S, Ashburner M, Henderson SN, Sutton GG, Wortman JR, Yandell MD, Zhang Q, Chen LX, Brandon RC, Rogers YH, Blazej RG, Champe M, Pfeiffer BD, Wan KH, Doyle C, Baxter EG, Helt G, Nelson CR, et al.: The genome sequence of Drosophila melanogaster. Science 2000, 287(5461):2185-2195.
  • [67]Li H, Durbin R: Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 2010, 26(5):589-595.
  • [68]Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, Meintjes P, Drummond A: Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 2012, 28(12):1647-1649.
  • [69]Hu TT, Eisen MB, Thornton KR, Andolfatto P: A second-generation assembly of the Drosophila simulans genome provides new insights into patterns of lineage-specific divergence. Genome Res 2013, 23(1):89-98.
  • [70]Mackay TF, Richards S, Stone EA, Barbadilla A, Ayroles JF, Zhu D, Casillas S, Han Y, Magwire MM, Cridland JM, Richardson MF, Anholt RR, Barron M, Bess C, Blankenburg KP, Carbone MA, Castellano D, Chaboub L, Duncan L, Harris Z, Javaid M, Jayaseelan JC, Jhangiani SN, Jordan KW, Lara F, Lawrence F, Lee SL, Librado P, Linheiro RS, Lyman RF, et al.: The Drosophila melanogaster Genetic Reference Panel. Nature 2012, 482(7384):173-178.
  • [71]Langmead B, Salzberg SL: Fast gapped-read alignment with Bowtie 2. Nat Methods 2012, 9(4):357-359.
  • [72]Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R: The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009, 25(16):2078-2079.
  • [73]Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJ, Birol I: ABySS: a parallel assembler for short read sequence data. Genome Res 2009, 19(6):1117-1123.
  • [74]Huelsenbeck JP, Ronquist F: MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 2001, 17(8):754-755.
  • [75]Stamatakis A: RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 2006, 22(21):2688-2690.
  • [76]Miller MA, Pfeiffer W, Schwartz T: Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In Proceedings of the Gateway Computing Environments Workshop (GCE): November 14, 2010. IEEE, New Orleans, LA; 2010:1-8.
  • [77]Paradis E, Claude J, Strimmer K: APE: analyses of phylogenetics and evolution in R language. Bioinformatics 2004, 20(2):289-290.
  • [78]Larracuente AM, Noor MA, Clark AG: Translocation of Y-linked genes to the dot chromosome in Drosophila pseudoobscura. Mol Biol Evol 2010, 27(7):1612-1620.
  • [79]Larracuente AM, Ferree PM: Simple method for fluorescence DNA in situ hybridization to 2-D chromosomes.JoVE. in press.
  文献评价指标  
  下载次数:9次 浏览次数:6次