期刊论文详细信息
BMC Genomics
Comparative genomic analysis of Mycobacterium tuberculosis clinical isolates
Baoli Zhu1  Cui Hua Liu1  George F Gao1  Hong Min Li2  Qi Wang1  Yongfei Hu1  Fei Liu1 
[1] CAS key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China;Institute for Tuberculosis Research, the 309th Hospital, Beijing, China
关键词: Evolution;    Whole genome sequencing;    Single nucleotide polymorphisms;    Drug resistance;    Mycobacterium tuberculosis;   
Others  :  1216592
DOI  :  10.1186/1471-2164-15-469
 received in 2013-08-27, accepted in 2014-06-10,  发布年份 2014
PDF
【 摘 要 】

Background

Due to excessive antibiotic use, drug-resistant Mycobacterium tuberculosis has become a serious public health threat and a major obstacle to disease control in many countries. To better understand the evolution of drug-resistant M. tuberculosis strains, we performed whole genome sequencing for 7 M. tuberculosis clinical isolates with different antibiotic resistance profiles and conducted comparative genomic analysis of gene variations among them.

Results

We observed that all 7 M. tuberculosis clinical isolates with different levels of drug resistance harbored similar numbers of SNPs, ranging from 1409–1464. The numbers of insertion/deletions (Indels) identified in the 7 isolates were also similar, ranging from 56 to 101. A total of 39 types of mutations were identified in drug resistance-associated loci, including 14 previously reported ones and 25 newly identified ones. Sixteen of the identified large Indels spanned PE-PPE-PGRS genes, which represents a major source of antigenic variability. Aside from SNPs and Indels, a CRISPR locus with varied spacers was observed in all 7 clinical isolates, suggesting that they might play an important role in plasticity of the M. tuberculosis genome. The nucleotide diversity (Л value) and selection intensity (dN/dS value) of the whole genome sequences of the 7 isolates were similar. The dN/dS values were less than 1 for all 7 isolates (range from 0.608885 to 0.637365), supporting the notion that M. tuberculosis genomes undergo purifying selection. The Л values and dN/dS values were comparable between drug-susceptible and drug-resistant strains.

Conclusions

In this study, we show that clinical M. tuberculosis isolates exhibit distinct variations in terms of the distribution of SNP, Indels, CRISPR-cas locus, as well as the nucleotide diversity and selection intensity, but there are no generalizable differences between drug-susceptible and drug-resistant isolates on the genomic scale. Our study provides evidence strengthening the notion that the evolution of drug resistance among clinical M. tuberculosis isolates is clearly a complex and diversified process.

【 授权许可】

   
2014 Liu et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150701125916746.pdf 1319KB PDF download
Figure 2. 41KB Image download
Figure 1. 122KB Image download
【 图 表 】

Figure 1.

Figure 2.

【 参考文献 】
  • [1]World Health Organization (WHO): Global tuberculosis report 2013. Geneva: WHO; 2013. Available from: http://apps.who.int/iris/bitstream/10665/91355/1/9789241564656_eng.pdf webcite
  • [2]Zhao Y, Xu S, Wang L, Chin DP, Wang S, Jiang G, Xia H, Zhou Y, Li Q, Ou X, Pang Y, Song Y, Zhao B, Zhang H, He G, Guo J, Wang Y: National survey of drug-resistant tuberculosis in China. N Engl J Med 2012, 366(23):2161-2170.
  • [3]Liu CH, Li L, Chen Z, Wang Q, Hu YL, Zhu B, Woo PC: Characteristics and treatment outcomes of patients with MDR and XDR tuberculosis in a TB referral hospital in Beijing: a 13-year experience. PLoS One 2011, 6(4):e19399.
  • [4]Otal I, Martin C, Vincent-Levy-Frebault V, Thierry D, Gicquel B: Restriction fragment length polymorphism analysis using IS6110 as an epidemiological marker in tuberculosis. J Clin Microbiol 1991, 29(6):1252-1254.
  • [5]Kamerbeek J, Schouls L, Kolk A, van Agterveld M, van Soolingen D, Kuijper S, Bunschoten A, Molhuizen H, Shaw R, Goyal M, van Embden J: Simultaneous detection and strain differentiation of Mycobacterium tuberculosis for diagnosis and epidemiology. J Clin Microbiol 1997, 35(4):907-914.
  • [6]Supply P, Allix C, Lesjean S, Cardoso-Oelemann M, Rüsch-Gerdes S, Willery E, Savine E, de Haas P, van Deutekom H, Roring S, Bifani P, Kurepina N, Kreiswirth B, Sola C, Rastogi N, Vatin V, Gutierrez MC, Fauville M, Niemann S, Skuce R, Kremer K, Locht C, van Soolingen D: Proposal for standardization of optimized mycobacterial interspersed repetitive unit-variable-number tandem repeat typing of Mycobacterium tuberculosis. J Clin Microbiol 2006, 44(12):4498-4510.
  • [7]Namouchi A, Didelot X, Schock U, Gicquel B, Rocha EP: After the bottleneck: Genome-wide diversification of the Mycobacterium tuberculosis complex by mutation, recombination, and natural selection. Genome Res 2012, 22(4):721-734.
  • [8]Tatusov RL, Koonin EV, Lipman DJ: A genomic perspective on protein families. Science 1997, 278(5338):631-637.
  • [9]Tatusov RL, Fedorova ND, Jackson JD, Jacobs AR, Kiryutin B, Koonin EV, Krylov DM, Mazumder R, Mekhedov SL, Nikolskaya AN, Rao BS, Smirnov S, Sverdlov AV, Vasudevan S, Wolf YI, Yin JJ, Natale DA: The COG database: an updated version includes eukaryotes. BMC Bioinformatics 2003, 4:41. BioMed Central Full Text
  • [10]Sampson SL: Mycobacterial PE/PPE proteins at the host-pathogen interface. Clin Dev Immunol 2011, 2011:497203.
  • [11]van Kessel JC, Hatfull GF: Recombineering in Mycobacterium tuberculosis. Nat Methods 2007, 4(2):147-152.
  • [12]Deitsch KW, Moxon ER, Wellems TE: Shared themes of antigenic variation and virulence in bacterial, protozoal, and fungal infections. Microbiol Mol Biol Rev 1997, 61(3):281-293.
  • [13]Di Pietrantonio T, Correa JA, Orlova M, Behr MA, Schurr E: Joint effects of host genetic background and mycobacterial pathogen on susceptibility to infection. Infect Immun 2011, 79(6):2372-2378.
  • [14]Kennemann L, Didelot X, Aebischer T, Kuhn S, Drescher B, Droege M, Reinhardt R, Correa P, Meyer TF, Josenhans C, Falush D, Suerbaum S: Helicobacter pylori genome evolution during human infection. Proc Natl Acad Sci U S A 2011, 108(12):5033-5038.
  • [15]Wu W, Zheng H, Zhang L, Wen Z, Zhang S, Pei H, Yu G, Zhu Y, Cui Z, Hu Z, Wang H, Li Y: A genome-wide analysis of multidrug-resistant and extensively drug-resistant strains of Mycobacterium tuberculosis Beijing genotype. Mol Genet Genomics 2013, 288(9):425-436.
  • [16]Rosas-Magallanes V, Deschavanne P, Quintana-Murci L, Brosch R, Gicquel B, Neyrolles O: Horizontal transfer of a virulence operon to the ancestor of Mycobacterium tuberculosis. Mol Biol Evol 2006, 23(6):1129-1135.
  • [17]Veyrier F, Pletzer D, Turenne C, Behr MA: Phylogenetic detection of horizontal gene transfer during the step-wise genesis of Mycobacterium tuberculosis. BMC Evol Biol 2009, 9:196. BioMed Central Full Text
  • [18]Bitter W, Houben EN, Bottai D, Brodin P, Brown EJ, Cox JS, Derbyshire K, Fortune SM, Gao LY, Liu J, Gey van Pittius NC, Pym AS, Rubin EJ, Sherman DR, Cole ST, Brosch R: Systematic genetic nomenclature for type VII secretion systems. PLoS Pathog 2009, 5(10):e1000507.
  • [19]Liu CH, Li HM, Lu N, Wang Q, Hu YL, Yang X, Hu YF, Woo PC, Gao GF, Zhu B: Genomic sequence based scanning for drug resistance-associated mutations and evolutionary analysis of multidrug-resistant and extensively drug-resistant Mycobacterium tuberculosis. J Infect 2012, 65(5):412-422.
  • [20]Pepperell CS, Casto AM, Kitchen A, Granka JM, Cornejo OE, Holmes EC, Birren B, Galagan J, Feldman MW: The role of selection in shaping diversity of natural M. tuberculosis Populations. Plos Pathog 2013, 9(8):e1003543.
  • [21]Etienne G, Malaga W, Laval F, Lemassu A, Guilhot C, Daffe M: Identification of the Polyketide Synthase Involved in the Biosynthesis of the Surface-Exposed Lipooligosaccharides in Mycobacteria. J Bacteriol 2009, 191(8):2613-2621.
  • [22]Rousseau C, Sirakova TD, Dubey VS, Bordat Y, Kolattukudy PE, Gicquel B, Jackson M: Virulence attenuation of two Mas-like polyketide synthase mutants of Mycobacterium tuberculosis. Microbiol-Sgm 2003, 149:1837-1847.
  • [23]Wells RM, Jones CM, Xi ZY, Speer A, Danilchanka O, Doornbos KS, Sun PB, Wu FM, Tian CL, Niederweis M: Discovery of a Siderophore export system essential for virulence of Mycobacterium tuberculosis. Plos Pathog 2013, 9(1):e1003120.
  • [24]Portevin D, Gagneux S, Comas I, Young D: Human Macrophage responses to clinical isolates from the Mycobacterium tuberculosis complex discriminate between ancient and modern lineages. Plos Pathog 2011, 7(3):e1001307.
  • [25]Palmer KL, Gilmore MS: Multidrug-resistant enterococci lack CRISPR-cas. MBio 2010, 1(4):e00227. 10.
  • [26]Danilchanka O, Mailaender C, Niederweis M: Identification of a novel multidrug efflux pump of Mycobacterium tuberculosis. Antimicrob Agents Chemother 2008, 52(7):2503-2511.
  • [27]Pasca MR, Guglierame P, Arcesi F, Bellinzoni M, De Rossi E, Riccardi G: Rv2686c-Rv2687c-Rv2688c, an ABC fluoroquinolone efflux pump in Mycobacterium tuberculosis. Antimicrob Agents Chemother 2004, 48(8):3175-3178.
  • [28]Calgin MK, Sahin F, Turegun B, Gerceker D, Atasever M, Koksal D, Karasartova D, Kiyan M: Expression analysis of efflux pump genes among drug-susceptible and multidrug-resistant Mycobacterium tuberculosis clinical isolates and reference strains. Diagn Microbiol Infect Dis 2013, 76(3):291-297.
  • [29]Jnawali HN, Hwang SC, Park YK, Kim H, Lee YS, Chung GT, Choe KH, Ryoo S: Characterization of mutations in multi- and extensive drug resistance among strains of Mycobacterium tuberculosis clinical isolates in Republic of Korea. Diagn Microbiol Infect Dis 2013, 76(2):187-196.
  • [30]Poudel A, Maharjan B, Nakajima C, Fukushima Y, Pandey BD, Beneke A, Suzuki Y: Characterization of extensively drug-resistant Mycobacterium tuberculosis in Nepal. Tuberculosis (Edinb) 2013, 93(1):84-88.
  • [31]Imperiale BR, Zumarraga MJ, Di Giulio AB, Cataldi AA, Morcillo NS: Molecular and phenotypic characterisation of Mycobacterium tuberculosis resistant to anti-tuberculosis drugs. Int J Tuberc Lung Dis 2013, 17(8):1088-1093.
  • [32]Zhang H, Li D, Zhao L, Fleming J, Lin N, Wang T, Liu Z, Li C, Galwey N, Deng J, Zhou Y, Zhu Y, Gao Y, Wang T, Wang S, Huang Y, Wang M, Zhong Q, Zhou L, Chen T, Zhou J, Yang R, Zhu G, Hang H, Zhang J, Li F, Wan K, Wang J, Zhang XE, Bi L: Genome sequencing of 161 Mycobacterium tuberculosis isolates from China identifies genes and intergenic regions associated with drug resistance. Nat Genet 2013, 45(10):1255-1260.
  • [33]Warner DF, Mizrahi V: Complex genetics of drug resistance in Mycobacterium tuberculosis. Nat Genet 2013, 45(10):1107-1108.
  • [34]Gandhi NR, Brust JC, Moodley P, Weissman D, Heo M, Ning Y, Moll AP, Friedland GH, Sturm AW, Shah NS: Minimal diversity of drug-resistant Mycobacterium tuberculosis strains, South Africa(1.). Emerg Infect Dis 2014, 20(3):394-401.
  • [35]Benson G: Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res 1999, 27(2):573-580.
  • [36]Coll F, Mallard K, Preston MD, Bentley S, Parkhill J, McNerney R, Martin N, Clark TG: SpolPred: rapid and accurate prediction of Mycobacterium tuberculosis spoligotypes from short genomic sequences. Bioinformatics 2012, 28(22):2991-2993.
  • [37]Delcher AL, Bratke KA, Powers EC, Salzberg SL: Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics 2007, 23(6):673-679.
  • [38]Lowe TM, Eddy SR: tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 1997, 25(5):955-964.
  • [39]Lagesen K, Hallin P, Rodland EA, Staerfeldt HH, Rognes T, Ussery DW: RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 2007, 35(9):3100-3108.
  • [40]Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M, Meyer F, Olsen GJ, Olson R, Osterman AL, Overbeek RA, McNeil LK, Paarmann D, Paczian T, Parrello B, Pusch GD, Reich C, Stevens R, Vassieva O, Vonstein V, Wilke A, Zagnitko O: The RAST Server: rapid annotations using subsystems technology. BMC Genomics 2008, 9:75. BioMed Central Full Text
  • [41]Li R, Li Y, Fang X, Yang H, Wang J, Kristiansen K, Wang J: SNP detection for massively parallel whole-genome resequencing. Genome Res 2009, 19(6):1124-1132.
  • [42]Li H, Durbin R: Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 2010, 26(5):589-595.
  • [43]Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, Genome Project Data Processing S: The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009, 25(16):2078-2079.
  • [44]Darling AC, Mau B, Blattner FR, Perna NT: Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res 2004, 14(7):1394-1403.
  • [45]Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, Antonescu C, Salzberg SL: Versatile and open software for comparing large genomes. Genome Biol 2004, 5(2):R12. BioMed Central Full Text
  • [46]Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones SJ, Marra MA: Circos: an information aesthetic for comparative genomics. Genome Res 2009, 19(9):1639-1645.
  • [47]Qi J, Zhao F: inGAP-sv: a novel scheme to identify and visualize structural variation from paired end mapping data. Nucleic Acids Res 2011, 39(Web Server issue):W567-W575.
  • [48]Grissa I, Vergnaud G, Pourcel C: CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats. Nucleic Acids Res 2007, 35(Web Server issue):W52-W57.
  • [49]Sandgren A, Strong M, Muthukrishnan P, Weiner BK, Church GM, Murray MB: Tuberculosis drug resistance mutation database. PLoS Med 2009, 6(2):e2.
  • [50]Librado P, Rozas J: DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 2009, 25(11):1451-1452.
  • [51]Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S: MEGA5: Molecular Evolutionary Genetics Analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011, 28(10):2731-2739.
  文献评价指标  
  下载次数:20次 浏览次数:17次