期刊论文详细信息
BMC Systems Biology
Global dynamic optimization approach to predict activation in metabolic pathways
Julio R Banga1  Eva Balsa-Canto1  Edda Klipp2  Gundián M de Hijas-Liste1 
[1] Bioprocess Engineering Group, Spanish National Research Council, IIM-CSIC, C/Eduardo Cabello 6, 36208 Vigo, Spain;Theoretical Biophysics, Humboldt-Universität zu Berlin, Invalidenstr. 42, 10115 Berlin, Germany
关键词: Gene expression;    Metabolic pathways;    Pareto optimality;    Multi-objective optimization;    Global optimization;    Dynamic optimization;   
Others  :  1141556
DOI  :  10.1186/1752-0509-8-1
 received in 2013-02-04, accepted in 2013-12-20,  发布年份 2014
PDF
【 摘 要 】

Background

During the last decade, a number of authors have shown that the genetic regulation of metabolic networks may follow optimality principles. Optimal control theory has been succesfully used to compute optimal enzyme profiles considering simple metabolic pathways. However, applying this optimal control framework to more general networks (e.g. branched networks, or networks incorporating enzyme production dynamics) yields problems that are analytically intractable and/or numerically very challenging. Further, these previous studies have only considered a single-objective framework.

Results

In this work we consider a more general multi-objective formulation and we present solutions based on recent developments in global dynamic optimization techniques. We illustrate the performance and capabilities of these techniques considering two sets of problems. First, we consider a set of single-objective examples of increasing complexity taken from the recent literature. We analyze the multimodal character of the associated non linear optimization problems, and we also evaluate different global optimization approaches in terms of numerical robustness, efficiency and scalability. Second, we consider generalized multi-objective formulations for several examples, and we show how this framework results in more biologically meaningful results.

Conclusions

The proposed strategy was used to solve a set of single-objective case studies related to unbranched and branched metabolic networks of different levels of complexity. All problems were successfully solved in reasonable computation times with our global dynamic optimization approach, reaching solutions which were comparable or better than those reported in previous literature. Further, we considered, for the first time, multi-objective formulations, illustrating how activation in metabolic pathways can be explained in terms of the best trade-offs between conflicting objectives. This new methodology can be applied to metabolic networks with arbitrary topologies, non-linear dynamics and constraints.

【 授权许可】

   
2014 de Hijas-Liste et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150327080242594.pdf 583KB PDF download
Figure 5. 94KB Image download
Figure 4. 61KB Image download
Figure 3. 76KB Image download
Figure 2. 80KB Image download
Figure 1. 68KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Sutherland WJ: The best solution. Nature 2005, 435:569.
  • [2]Orth JD, Thiele I, Palsson BO: What is flux balance analysis? Nat Biotechnol 2010, 28(3):245-248.
  • [3]Klipp E, Holzhütter HG, Heinrich R: Reprogramming of the metabolic system by altering gene expression. In Proceedings of the 9th Int. Meeting on BioThermoKinetics: Animating the Cellular Map. South Africa: Stellenbosch University Press; 2000:65-70.
  • [4]Klipp E, Heinrich R, Holzhütter HG: Prediction of temporal gene expression. Metabolic optimization by re-distribution of enzyme activities. Eur J Biochem 2002, 269:5406-5413.
  • [5]Zaslaver A, Mayo AE, Rosenberg R, Bashkin P, Sberro H, Tsalyuk M, Surette M, Alon U: Just-in-time transcription program in metabolic pathways. Nat Genet 2004, 36:486-491.
  • [6]Oyarzún DA, Ingalls BP, Middleton RH, Kalamatianos D: Sequential activation of metabolic pathways: a dynamic optimization approach. Bull Math Biol 2009, 71:1851-1872.
  • [7]Bartl M, Li P, Schuster S: Modelling the optimal timing in metabolic pathway activation-use of Pontryagin’s Maximum Principle and role of the golden section. Biosystems 2010, 101:67-77.
  • [8]Banga JR, Balsa-Canto E: Parameter estimation and optimal experimental design. Essays Biochem 2008, 45:195-210.
  • [9]Lebiedz D, Maurer H: External optimal control of self-organisation dynamics in a chemotaxis reaction diffusion system. IET Syst Biol 2004, 2:222-229.
  • [10]Salby O, Sager S, Shaik OS, Kummer U, Lebiedz D: Optimal control of self-organized dynamics in cellular signal transduction. Math Comput Model Dynamical Syst 2007, 13:487-502.
  • [11]Vilas C, Balsa-Canto E, Garcia MSG, Banga JR, Alonso AA: Dynamic optimization of distributed biological systems using robust and efficient numerical techniques. BMC Syst Biol 2012, 6:79. BioMed Central Full Text
  • [12]Ou J, Yamada T, Nagahis K, Hirasawa T, Furusawa C, Yomo T, Shimizu H: Dynamic change in promoter activation during lysine biosynthesis in Escherichia coli cells. Mol Biosyst 2008, 4:128-134.
  • [13]Chechik G, Oh E, Rando O, Weissman J, Regev A, Koller D: Activity motifs reveal principles of timing in transcriptional control of the yeast metabolic network. Nat Biotechnol 2008, 26:1251-1259.
  • [14]Oyarzún DA: Optimal control of metabolic networks with saturable enzyme kinetics. IET Syst Biol 2011, 5(2):110-119.
  • [15]Bartl M, Kötzing M, Kaleta C, Schuster S, Li P: Just-in-time activation of a glycolysis inspired metabolic network - solution with a dynamic optimization approach. In Proceedings 55nd International Scientific Colloquium. Ilmenau (Germany): Universitätsbibliothek Ilmenau; 2010.
  • [16]Handl J, Kell DB, Knowles J: Multiobjective optimization in bioinformatics and computational biology. Computat Biol Bioinformatics, IEEE/ACM Trans 2007, 4(2):279-292.
  • [17]Sendin JOH, Vera J, Torres NV, Banga JR: Model based optimization of biochemical systems using multiple objectives: a comparison of several solution strategies. Math Comput Model Dynamical Syst 2006, 12(5):469-487.
  • [18]Sendin JOH, Exler O, Banga JR: Multi-objective mixed integer strategy for the optimisation of biological networks. IET Syst Biol 2010, 4(3):236-248.
  • [19]El-Samad H, Khammash M, Homescu C, Petzold L: Optimal performance of the heat-shock gene regulatory network. In Proceedings 16th IFAC World Congress, Volume 16. Prague, Czech Republic: Elsevier; 2005:2206-2206.
  • [20]Higuera C, Villaverde AF, Banga JR, Ross J, Moran F: Multi-criteria optimization of regulation in metabolic networks. PLoS ONE 2012, 7(7):e41122.
  • [21]Shoval O, Sheftel H, Shinar G, Hart Y, Ramote O, Mayo A, Dekel E, Kavanagh K, Alon U: Evolutionary trade-offs, pareto optimality, and the geometry of phenotype space. Science 2012, 336(6085):1157-1160.
  • [22]Noor E, Milo R: Efficiency in evolutionary trade-offs. Science 2012, 336(6085):1114-1115.
  • [23]Szekely P, Sheftel H, Mayo A, Alon U: Evolutionary tradeoffs between economy and effectiveness in biological homeostasis systems. PLOS Comput Biol 2013, 9:e1003163.
  • [24]Wessely F, Bartl M, Guthke R, Li P, Schuster S, Kaleta C: Optimal regulatory strategies for metabolic pathways in Escherichia coli depending on protein costs. Mol Syst Biol 2011, 7:515-528.
  • [25]Banga JR, Balsa-Canto E, Moles C, Alonso AA: Dynamic optimization of bioprocesses: efficient and robust numerical strategies. J Biotechnol 2005, 117:407-419.
  • [26]Biegler LT, Cervantes AM, Wätcher A: Advances in simultaneous strategies for dynamic process optimization. Chem Eng Sci 2002, 57(4):575-593.
  • [27]Bock HG, Plitt KJ: A multiple shooting algorithm for direct solution of optimal control problems. In Proceedings 9th IFAC World Congress. New York: Pergamon Press; 1984:242-247.
  • [28]Vassiliadis VS, Sargent RWH, Pantelides CC: Solution of a class of multistage dynamic optimization problems. 1. Problems without path constraints. Ind Eng Chem Res 1994, 33(9):2111-2122.
  • [29]Balsa-Canto E, Vassiliadis VS, Banga JR: Dynamic optimization of single- and multi-stage systems using a hybrid stochastic-deterministic method. Ind Eng Chem Res 2005, 44(5):1514-1523.
  • [30]Egea JA, Rodriguez-Fernandez M, Banga JR, Marti R: Scatter search for chemical and bio-process optimization. J Glob Optimization 2007, 37(3):481-503.
  • [31]Egea JA, Balsa-Canto E, Garcia MG, Banga JR: Dynamic optimization of nonlinear processes with an enhanced scatter search method. Ind Eng Chem Res 2009, 48(9):4388-4401.
  • [32]Runarsson TP, Yao X: Stochastic ranking for constrained evolutionary optimization. IEEE Trans Evol Comput 2000, 564:284-294.
  • [33]Storn R, Price K: Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optimization 1997, 11:341-359.
  • [34]Egea JA, Martí R, Banga JR: An evolutionary method for complex-process optimization. Comput Oper Res 2010, 37(2):315-324.
  • [35]Oyarzún DA: A control-theoretic approach to dynamic optimization of metabolic networks. PhD thesis. PhD thesis. National University of Ireland Maynooth, Ireland 2010.
  • [36]Cascante M, Lloréns M, Meléndez-Hevia E, Puigjaner J, Montero F, Martí E: The metabolic productivity of the cell factory. J Theor Biol 1996, 153:317-325.
  文献评价指标  
  下载次数:45次 浏览次数:22次