期刊论文详细信息
BMC Medicine
Targeted therapies for ER+/HER2- metastatic breast cancer
Fabrice André1  Monica Arnedos3  Mutsuko Yamamoto-Ibusuki2 
[1] Department of Medical Oncology and INSERM Unit U981, Gustave Roussy Cancer Campus, 114 Rue Edouard Vaillant, Villejuif 94800, France;Department of Breast and Endocrine Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan;INSERM Unit U981, Gustave Roussy Cancer Campus, Villejuif, France
关键词: Endocrine therapy resistance;    Cancer genome;    Targeted therapy;    Breast cancer;   
Others  :  1213731
DOI  :  10.1186/s12916-015-0369-5
 received in 2015-02-12, accepted in 2015-05-14,  发布年份 2015
PDF
【 摘 要 】

The majority of breast cancers present with estrogen receptor (ER)-positive and human epidermal growth factor receptor (HER2)-negative features and might benefit from endocrine therapy. Although endocrine therapy has notably evolved during the last decades, the invariable appearance of endocrine resistance, either primary or secondary, remains an important issue in this type of tumor. The improvement of our understanding of the cancer genome has identified some promising targets that might be responsible or linked to endocrine resistance, including alterations affecting main signaling pathways like PI3K/Akt/mTOR and CCND1/CDK4-6 as well as the identification of new ESR1 somatic mutations, leading to an array of new targeted therapies that might circumvent or prevent endocrine resistance. In this review, we have summarized the main targeted therapies that are currently being tested in ER+ breast cancer, the rationale behind them, and the new agents and combinational treatments to come.

【 授权许可】

   
2015 Yamamoto-Ibusuki et al.

【 预 览 】
附件列表
Files Size Format View
20150615023902956.pdf 1729KB PDF download
Fig. 1. 94KB Image download
【 图 表 】

Fig. 1.

【 参考文献 】
  • [1]Theriault RL, Carlson RW, Allred C, Anderson BO, Burstein HJ, Edge SB et al.. Breast cancer, version 3.2013: featured updates to the NCCN guidelines. J Natl Compr Canc Netw. 2013; 11:753-60.
  • [2]Cardoso F, Costa A, Norton L, Senkus E, Aapro M, Andre F et al.. ESO-ESMO 2nd international consensus guidelines for advanced breast cancer (ABC2)dagger. Ann Oncol. 2014; 25:1871-88.
  • [3]Andre F, Slimane K, Bachelot T, Dunant A, Namer M, Barrelier A et al.. Breast cancer with synchronous metastases: trends in survival during a 14-year period. J Clin Oncol. 2004; 22:3302-8.
  • [4]Buzdar AU. Phase III, study of letrozole versus tamoxifen as first-line therapy of advanced breast cancer in postmenopausal women: analysis of survival and update of efficacy from the International Letrozole Breast Cancer Group. J Clin Oncol. 2004; 22:3199-200.
  • [5]Andre F, Neven P, Marinsek N, Zhang J, Baladi JF, Degun R et al.. Disease management patterns for postmenopausal women in Europe with hormone-receptor-positive, human epidermal growth factor receptor-2 negative advanced breast cancer. Curr Med Res Opin. 2014; 30:1007-16.
  • [6]Muss HB, Case LD, Atkins JN, Bearden JD, Cooper MR, Cruz JM et al.. Tamoxifen versus high-dose oral medroxyprogesterone acetate as initial endocrine therapy for patients with metastatic breast cancer: a Piedmont Oncology Association study. J Clin Oncol. 1994; 12:1630-8.
  • [7]Ellis MJ, Gao F, Dehdashti F, Jeffe DB, Marcom PK, Carey LA et al.. Lower-dose vs high-dose oral estradiol therapy of hormone receptor-positive, aromatase inhibitor-resistant advanced breast cancer: a phase 2 randomized study. JAMA. 2009; 302:774-80.
  • [8]Iwase H, Yamamoto Y, Yamamoto-Ibusuki M, Murakami KI, Okumura Y, Tomita S et al.. Ethinylestradiol is beneficial for postmenopausal patients with heavily pre-treated metastatic breast cancer after prior aromatase inhibitor treatment: a prospective study. Br J Cancer. 2013; 109:1537-42.
  • [9]Abraham JE, Maranian MJ, Driver KE, Platte R, Kalmyrzaev B, Baynes C et al.. CYP2D6 gene variants: association with breast cancer specific survival in a cohort of breast cancer patients from the United Kingdom treated with adjuvant tamoxifen. Breast Cancer Res. 2010; 12:R64. BioMed Central Full Text
  • [10]Wang L, Ellsworth KA, Moon I, Pelleymounter LL, Eckloff BW, Martin YN et al.. Functional genetic polymorphisms in the aromatase gene CYP19 vary the response of breast cancer patients to neoadjuvant therapy with aromatase inhibitors. Cancer Res. 2010; 70:319-28.
  • [11]Jin Y, Desta Z, Stearns V, Ward B, Ho H, Lee KH et al.. CYP2D6 genotype, antidepressant use, and tamoxifen metabolism during adjuvant breast cancer treatment. J Natl Cancer Inst. 2005; 97:30-9.
  • [12]Ferraldeschi R, Arnedos M, Hadfield KD, A'Hern R, Drury S, Wardley A et al.. Polymorphisms of CYP19A1 and response to aromatase inhibitors in metastatic breast cancer patients. Breast Cancer Res Treat. 2012; 133:1191-8.
  • [13]Binkhorst L, Mathijssen RH, Jager A, van Gelder T. Individualization of tamoxifen therapy: much more than just CYP2D6 genotyping. Canc Treat Rev. 2015; 41:289-99.
  • [14]Osborne CK, Schiff R. Mechanisms of endocrine resistance in breast cancer. Annu Rev Med. 2011; 62:233-47.
  • [15]Gewinner C, Wang ZC, Richardson A, Teruya-Feldstein J, Etemadmoghadam D, Bowtell D et al.. Evidence that inositol polyphosphate 4-phosphatase type II is a tumor suppressor that inhibits PI3K signaling. Cancer Cell. 2009; 16:115-25.
  • [16]Stephens PJ, Tarpey PS, Davies H, Van Loo P, Greenman C, Wedge DC et al.. The landscape of cancer genes and mutational processes in breast cancer. Nature. 2012; 486:400-4.
  • [17]Hortobagyi GN, Piccart-Gebhart MJ, HS R. Correlation of molecular alterations with efficacy of everolimus in hormone receptor–-positive, HER2-negative advanced breast cancer: Results from BOLERO-2. J Clin Oncol 31, 2013 (suppl; abstr LBA509).
  • [18]Andre F, Job B, Dessen P, Tordai A, Michiels S, Liedtke C et al.. Molecular characterization of breast cancer with high-resolution oligonucleotide comparative genomic hybridization array. Clin Cancer Res. 2009; 15:441-51.
  • [19]Curtis C, Shah SP, Chin SF, Turashvili G, Rueda OM, Dunning MJ et al.. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature. 2012; 486:346-52.
  • [20]Musgrove EA, Caldon CE, Barraclough J, Stone A, Sutherland RL. Cyclin D as a therapeutic target in cancer. Nat Rev Cancer. 2011; 11:558-72.
  • [21]Migliaccio I, Malorni L, Hart CD, Guarducci C, Di Leo A. Endocrine therapy considerations in postmenopausal patients with hormone receptor positive, human epidermal growth factor receptor type 2 negative advanced breast cancers. BMC Med. 2015; 13:280. BioMed Central Full Text
  • [22]Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011; 144:646-74.
  • [23]Hirsch E, Ciraolo E, Franco I, Ghigo A, Martini M. PI3K in cancer-stroma interactions: bad in seed and ugly in soil. Oncogene. 2014; 33:3083-90.
  • [24]Samuels Y, Ericson K. Oncogenic PI3K and its role in cancer. Curr Opin Oncol. 2006; 18:77-82.
  • [25]Comprehensive molecular portraits of human breast tumours. Nature. 2012; 490:61-70.
  • [26]Miller TW, Hennessy BT, Gonzalez-Angulo AM, Fox EM, Mills GB, Chen H et al.. Hyperactivation of phosphatidylinositol-3 kinase promotes escape from hormone dependence in estrogen receptor-positive human breast cancer. J Clin Invest. 2010; 120:2406-13.
  • [27]Simoncini T, Hafezi-Moghadam A, Brazil DP, Ley K, Chin WW, Liao JK. Interaction of oestrogen receptor with the regulatory subunit of phosphatidylinositol-3-OH kinase. Nature. 2000; 407:538-41.
  • [28]DeGraffenried LA, Fulcher L, Friedrichs WE, Grunwald V, Ray RB, Hidalgo M. Reduced PTEN expression in breast cancer cells confers susceptibility to inhibitors of the PI3 kinase/Akt pathway. Ann Oncol. 2004; 15:1510-6.
  • [29]Tabernero J, Rojo F, Calvo E, Burris H, Judson I, Hazell K et al.. Dose- and schedule-dependent inhibition of the mammalian target of rapamycin pathway with everolimus: a phase I tumor pharmacodynamic study in patients with advanced solid tumors. J Clin Oncol. 2008; 26:1603-10.
  • [30]Chan S, Scheulen ME, Johnston S, Mross K, Cardoso F, Dittrich C et al.. Phase II study of temsirolimus (CCI-779), a novel inhibitor of mTOR, in heavily pretreated patients with locally advanced or metastatic breast cancer. J Clin Oncol. 2005; 23:5314-22.
  • [31]Boulay A, Rudloff J, Ye J, Zumstein-Mecker S, O'Reilly T, Evans DB et al.. Dual inhibition of mTOR and estrogen receptor signaling in vitro induces cell death in models of breast cancer. Clin Cancer Res. 2005; 11:5319-28.
  • [32]Baselga J, Semiglazov V, van Dam P, Manikhas A, Bellet M, Mayordomo J et al.. Phase II randomized study of neoadjuvant everolimus plus letrozole compared with placebo plus letrozole in patients with estrogen receptor-positive breast cancer. J Clin Oncol. 2009; 27:2630-7.
  • [33]Bachelot T, Bourgier C, Cropet C, Ray-Coquard I, Ferrero JM, Freyer G et al.. Randomized phase II trial of everolimus in combination with tamoxifen in patients with hormone receptor-positive, human epidermal growth factor receptor 2-negative metastatic breast cancer with prior exposure to aromatase inhibitors: a GINECO study. J Clin Oncol. 2012; 30:2718-24.
  • [34]Baselga J, Campone M, Piccart M, Burris HA, Rugo HS, Sahmoud T et al.. Everolimus in postmenopausal hormone-receptor-positive advanced breast cancer. N Engl J Med. 2012; 366:520-9.
  • [35]Wolff AC, Lazar AA, Bondarenko I, Garin AM, Brincat S, Chow L et al.. Randomized phase III placebo-controlled trial of letrozole plus oral temsirolimus as first-line endocrine therapy in postmenopausal women with locally advanced or metastatic breast cancer. J Clin Oncol. 2013; 31:195-202.
  • [36]Yardley DA, Noguchi S, Pritchard KI, Burris HA, Baselga J, Gnant M et al.. Everolimus plus exemestane in postmenopausal patients with HR(+) breast cancer: BOLERO-2 final progression-free survival analysis. Adv Ther. 2013; 30:870-84.
  • [37]Piccart M, Hortobagyi GN, Campone M, Pritchard KI, Lebrun F, Ito Y et al.. Everolimus plus exemestane for hormone-receptor-positive, human epidermal growth factor receptor-2-negative advanced breast cancer: cancer: overall survival results from BOLERO-2. Ann Oncol. 2014; 25:2357-62.
  • [38]Treilleux IAM, Cropet C, Ferrero J, Lacourtoisie S, Spaeth D. Predictive markers of everolimus efficacy in hormone receptor positive (HR+) metastatic breast cancer (MBC): final results of the TAMRAD Trial Translational Study. J Clin Oncol. 2013; 31:510.
  • [39]Stemke-Hale K, Gonzalez-Angulo AM, Lluch A, Neve RM, Kuo WL, Davies M et al.. An integrative genomic and proteomic analysis of PIK3CA, PTEN, and AKT mutations in breast cancer. Cancer Res. 2008; 68:6084-91.
  • [40]Ellis MJ, Lin L, Crowder R, Tao Y, Hoog J, Snider J et al.. Phosphatidyl-inositol-3-kinase alpha catalytic subunit mutation and response to neoadjuvant endocrine therapy for estrogen receptor positive breast cancer. Breast Cancer Res Treat. 2010; 119:379-90.
  • [41]Campbell IG, Russell SE, Choong DY, Montgomery KG, Ciavarella ML, Hooi CS et al.. Mutation of the PIK3CA gene in ovarian and breast cancer. Cancer Res. 2004; 64:7678-81.
  • [42]Perez-Tenorio G, Alkhori L, Olsson B, Waltersson MA, Nordenskjold B, Rutqvist LE et al.. PIK3CA mutations and PTEN loss correlate with similar prognostic factors and are not mutually exclusive in breast cancer. Clin Cancer Res. 2007; 13:3577-84.
  • [43]Fu X, Osborne CK, Schiff R. Biology and therapeutic potential of PI3K signaling in ER+/HER2-negative breast cancer. Breast. 2013; 22:S12-8.
  • [44]Shapiro GI, Rodon J, Bedell C, Kwak EL, Baselga J, Brana I et al.. Phase I safety, pharmacokinetic, and pharmacodynamic study of SAR245408 (XL147), an oral pan-class I PI3K inhibitor, in patients with advanced solid tumors. Clin Cancer Res. 2014; 20:233-45.
  • [45]Sarker D, Ang JE, Baird R, Kristeleit R, Shah K, Moreno V et al.. First-in-human phase I study of pictilisib (GDC-0941), a potent pan-class I phosphatidylinositol-3-kinase (PI3K) inhibitor, in patients with advanced solid tumors. Clin Cancer Res. 2015; 21:77-86.
  • [46]Maira SM, Pecchi S, Huang A, Burger M, Knapp M, Sterker D et al.. Identification and characterization of NVP-BKM120, an orally available pan-class I PI3-kinase inhibitor. Mol Canc Therapeut. 2012; 11:317-28.
  • [47]Rodon J, Brana I, Siu LL, De Jonge MJ, Homji N, Mills D et al.. Phase I dose-escalation and -expansion study of buparlisib (BKM120), an oral pan-Class I PI3K inhibitor, in patients with advanced solid tumors. Investig New Drugs. 2014; 32:670-81.
  • [48]Mayer IA, Abramson VG, Isakoff SJ, Forero A, Balko JM, Kuba MG et al.. Stand up to cancer phase Ib study of pan-phosphoinositide-3-kinase inhibitor buparlisib with letrozole in estrogen receptor-positive/human epidermal growth factor receptor 2-negative metastatic breast cancer. J Clin Oncol. 2014; 32:1202-9.
  • [49]Juric D, Rodon J, Gonzalez-Angulo A, Burris HA, Bendel J, Berlin J et al.. BYL719, a next generation PI3K alpha specific inhibitor: Preliminary safety, PK, and efficacy results from the first-in-human study. Cancer Res. 2012; 72:1.
  • [50]Shah OJ, Wang Z, Hunter T. Inappropriate activation of the TSC/Rheb/mTOR/S6K cassette induces IRS1/2 depletion, insulin resistance, and cell survival deficiencies. Curr Biol. 2004; 14:1650-6.
  • [51]Gupta S, Ramjaun AR, Haiko P, Wang Y, Warne PH, Nicke B et al.. Binding of ras to phosphoinositide 3-kinase p110alpha is required for ras-driven tumorigenesis in mice. Cell. 2007; 129:957-68.
  • [52]Zhang H, Bajraszewski N, Wu E, Wang H, Moseman AP, Dabora SL et al.. PDGFRs are critical for PI3K/Akt activation and negatively regulated by mTOR. J Clin Invest. 2007; 117:730-8.
  • [53]Edelman G, Bedell C, Shapiro G, Pandya SS, Kwak EL, Scheffold C, et al. A phase I dose-escalation study of XL147 (SAR245408), a PI3K inhibitor administered orally to patients (pts) with advanced malignancies. J Clin Oncol. 28:15s, 2010 (suppl; abstr 3004).
  • [54]Krop I, Johnston S, Mayer A, Dickler M, Ganju V, Forero-Torres A. FERGI phase II study of PI3K inhibitor Pictilisibpictilisib (GDC-0941) plus fulvestrant vs Fulvestrant plus placebo in patients with ER+, aromatase inhibitor (AI)-resistant advanced or metastatic breast cancer - Part I results. Cancer Research. 05/2015; 75(9 Supplement).
  • [55]Roberts PJ, Bisi JE, Strum JC, Combest AJ, Darr DB, Usary JE et al.. Multiple roles of cyclin-dependent kinase 4/6 inhibitors in cancer therapy. J Natl Cancer Inst. 2012; 104:476-87.
  • [56]Lange CA, Yee D. Killing the second messenger: targeting loss of cell cycle control in endocrine-resistant breast cancer. (Endocr Relat. Cancer. 2011; 18:C19-24.
  • [57]Finn RS, Dering J, Conklin D, Kalous O, Cohen DJ, Desai AJ et al.. PD 0332991, a selective cyclin D kinase 4/6 inhibitor, preferentially inhibits proliferation of luminal estrogen receptor-positive human breast cancer cell lines in vitro. Breast Cancer Res. 2009; 11:R77. BioMed Central Full Text
  • [58]Finn RS, Crown JP, Lang I, Boer K, Bondarenko IM, Kulyk SO et al.. The cyclin-dependent kinase 4/6 inhibitor palbociclib in combination with letrozole versus letrozole alone as first-line treatment of oestrogen receptor-positive, HER2-negative, advanced breast cancer (PALOMA-1/TRIO-18): a randomised phase 2 study. Lancet Oncol. 2015; 16:25-35.
  • [59]Patnaik A, Rosen LS, Tolaney SM, Tolcher AW, Goldman JW, Leena Gandhi L, et al. Clinical activity of LY2835219, a novel cell cycle inhibitor selective for CDK4 and CDK6, in patients with metastatic breast cancer. Cancer Res 2014;74:Abstract nr CT232.
  • [60]Vora SR, Juric D, Kim N, Mino-Kenudson M, Huynh T, Costa C et al.. CDK 4/6 inhibitors sensitize PIK3CA mutant breast cancer to PI3K inhibitors. Cancer Cell. 2014; 26:136-49.
  • [61]Turner N, Pearson A, Sharpe R, Lambros M, Geyer F, Lopez-Garcia MA et al.. FGFR1 amplification drives endocrine therapy resistance and is a therapeutic target in breast cancer. Cancer Res. 2010; 70:2085-94.
  • [62]Andre F, Bachelot T, Commo F, Campone M, Arnedos M, Dieras V et al.. Comparative genomic hybridisation array and DNA sequencing to direct treatment of metastatic breast cancer: a multicentre, prospective trial (SAFIR01/UNICANCER). Lancet Oncol. 2014; 15:267-74.
  • [63]Andre F, Bachelot T, Campone M, Dalenc F, Perez-Garcia JM, Hurvitz SA et al.. Targeting FGFR with dovitinib (TKI258): preclinical and clinical data in breast cancer. Clin Cancer Res. 2013; 19:3693-702.
  • [64]Sengupta N, Seto E. Regulation of histone deacetylase activities. J Cell Biochem. 2004; 93:57-67.
  • [65]Fischle W, Wang Y, Allis CD. Binary switches and modification cassettes in histone biology and beyond. Nature. 2003; 425:475-9.
  • [66]Bolden JE, Peart MJ, Johnstone RW. Anticancer activities of histone deacetylase inhibitors. Nat Rev Drug Discov. 2006; 5:769-84.
  • [67]Marks P, Rifkind RA, Richon VM, Breslow R, Miller T, Kelly WK. Histone deacetylases and cancer: causes and therapies. Nat Rev Cancer. 2001; 1:194-202.
  • [68]Dokmanovic M, Marks PA. Prospects: histone deacetylase inhibitors. J Cell Biochem. 2005; 96:293-304.
  • [69]Piekarz RL, Sackett DL, Bates SE. Histone deacetylase inhibitors and demethylating agents: clinical development of histone deacetylase inhibitors for cancer therapy. Cancer J (Sudbury, Mass). 2007; 13:30-9.
  • [70]Yu C, Rahmani M, Conrad D, Subler M, Dent P, Grant S. The proteasome inhibitor bortezomib interacts synergistically with histone deacetylase inhibitors to induce apoptosis in Bcr/Abl+ cells sensitive and resistant to STI571. Blood. 2003; 102:3765-74.
  • [71]Margueron R, Duong V, Castet A, Cavailles V. Histone deacetylase inhibition and estrogen signalling in human breast cancer cells. Biochem Pharmacol. 2004; 68:1239-46.
  • [72]Munster PN, Thurn KT, Thomas S, Raha P, Lacevic M, Miller A et al.. A phase II study of the histone deacetylase inhibitor vorinostat combined with tamoxifen for the treatment of patients with hormone therapy-resistant breast cancer. Br J Cancer. 2011; 104:1828-35.
  • [73]Yardley DA, Ismail-Khan RR, Melichar B, Lichinitser M, Munster PN, Klein PM et al.. Randomized phase II, double-blind, placebo-controlled study of exemestane with or without entinostat in postmenopausal women with locally recurrent or metastatic estrogen receptor-positive breast cancer progressing on treatment with a nonsteroidal aromatase inhibitor. J Clin Oncol. 2013; 31:2128-35.
  • [74]Ali A, Bluteau O, Messaoudi K, Palazzo A, Boukour S, Lordier L et al.. Thrombocytopenia induced by the histone deacetylase inhibitor abexinostat involves p53-dependent and -independent mechanisms. Cell Death Dis. 2013; 4:e738.
  • [75]Robinson DR, Wu YM, Vats P, Su F, Lonigro RJ, Cao X et al.. Activating ESR1 mutations in hormone-resistant metastatic breast cancer. Nat Genet. 2013; 45:1446-51.
  • [76]Toy W, Shen Y, Won H, Green B, Sakr RA, Will M et al.. ESR1 ligand-binding domain mutations in hormone-resistant breast cancer. Nat Genet. 2013; 45:1439-45.
  • [77]Jeselsohn R, Yelensky R, Buchwalter G, Frampton G, Meric-Bernstam F, Gonzalez-Angulo AM et al.. Emergence of constitutively active estrogen receptor-alpha mutations in pretreated advanced estrogen receptor-positive breast cancer. Clin Cancer Res. 2014; 20:1757-67.
  • [78]Yu M, Bardia A, Aceto N, Bersani F, Madden MW, Donaldson MC et al.. Cancer therapy. Ex vivo culture of circulating breast tumor cells for individualized testing of drug susceptibility. Science. 2014; 345:216-20.
  文献评价指标  
  下载次数:18次 浏览次数:9次