期刊论文详细信息
BMC Cancer
Growth and metastasis of B16-F10 melanoma cells is not critically dependent on host CD73 expression in mice
Sandra Burghoff3  Xuan Gong1  Claudia Viethen1  Christoph Jacoby1  Ulrich Flögel1  Sabine Bongardt1  Anne Schorr2  Andreas Hippe2  Bernhard Homey2  Jürgen Schrader1 
[1] Institute of Molecular Cardiology, Heinrich Heine University Duesseldorf, 40225 Duesseldorf, Germany
[2] Department of Dermatology, University Hospital Duesseldorf, 40225 Duesseldorf, Germany
[3] Current address: MVZ Labor Dessau GmbH, 06847 Dessau, Germany
关键词: Mice;    Tumor;    Immune system;    Adenosine;    B16-F10 melanoma;    CD73;   
Others  :  1117973
DOI  :  10.1186/1471-2407-14-898
 received in 2014-03-31, accepted in 2014-11-27,  发布年份 2014
PDF
【 摘 要 】

Background

Recent studies have suggested that adenosine generated by ecto-5′-nucleotidase (CD73) in the tumor microenvironment plays a major role in promoting tumor growth by suppressing the immune response and stimulating angiogenesis via A2A and A2B receptors. However, adenosine has also been reported to inhibit tumor growth acting via A1 and A3 receptors. Therefore the aim of this study was to clarify the role of host CD73, which catalyzes the extracellular hydrolysis of AMP to adenosine, on tumor growth and metastasis of B16-F10 melanoma cells.

Methods

CD73 and alkaline phosphatase (AP) activity of B16-F10 melanoma cells were measured by HPLC. Tumor cells were injected either subcutaneously or intradermally in WT and CD73−/− mice and tumor growth was monitored by MRI at 9.4 T. Immune cell subpopulations within tumors were assessed by FACS after enzymatic digestion. An endothelium specific CD73−/− was created using Tie2-Cre+ mice and CD73flox/flox (loxP) mice. Chimeric mice lacking CD73−/− on hematopoietic cells was generated by bone marrow transplantation. Lung metastatic spread was measured after intravenous B16-F10 application.

Results

B16-F10 cells showed very little CD73 and negligible AP activity. Neither complete loss of host CD73 nor specific knockout of CD73 on endothelial cells or hematopoietic cells affected tumor growth after subcutaneous or intradermal tumor cell application. Only peritumoral edema formation was significantly attenuated in global CD73−/− mice in the intradermal model. Immune cell composition revealed no differences in the different transgenic mice models. Also lung metastasis after intravenous B16-F10 injection was not altered in CD73−/− mice.

Conclusions

CD73 expression on host cells, particularly on endothelial and hematopoietic cells, does not modulate tumor growth and metastatic spread of B16-F10 melanoma cells most likely because of insufficient adenosine formation by the tumor itself.

【 授权许可】

   
2014 Burghoff et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150206014300139.pdf 1227KB PDF download
Figure 8. 79KB Image download
Figure 7. 78KB Image download
Figure 6. 96KB Image download
Figure 5. 56KB Image download
Figure 4. 56KB Image download
Figure 3. 81KB Image download
Figure 2. 85KB Image download
Figure 1. 48KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

【 参考文献 】
  • [1]Stagg J, Smyth MJ: Extracellular adenosine triphosphate and adenosine in cancer. Oncogene 2010, 29:5346-5358.
  • [2]Berglund E, Berglund D, Akcakaya P, Ghaderi M, Daré E, Berggren P, Köhler M, Aspinwall CA, Lui W, Zedenius J, Larsson C, Bränström R: Evidence for Ca(2+)-regulated ATP release in gastrointestinal stromal tumors. Exp Cell Res 2013, 319:1229-1238.
  • [3]Ayna G, Krysko DV, Kaczmarek A, Petrovski G, Vandenabeele P, Fésüs L: ATP release from dying autophagic cells and their phagocytosis are crucial for inflammasome activation in macrophages. PLoS One 2012, 7:e40069.
  • [4]Antonioli L, Blandizzi C, Pacher P, Haskó G: Immunity, inflammation and cancer: a leading role for adenosine. Nat Rev Cancer 2013, 13:842-857.
  • [5]Allard B, Turcotte M, Stagg J: CD73-generated adenosine: orchestrating the tumor-stroma interplay to promote cancer growth. J Biomed Biotechnol 2012, 2012:485156.
  • [6]Ohta A, Gorelik E, Prasad SJ, Ronchese F, Lukashev D, Wong MK, Huang X, Caldwell S, Liu K, Smith P, Chen J, Jackson EK, Apasov S, Abrams S, Sitkovsky M: A2A adenosine receptor protects tumors from antitumor T cells. Proc Natl Acad Sci U S A 2006, 103:13132-13137.
  • [7]Ryzhov S, Novitskiy SV, Zaynagetdinov R, Goldstein AE, Carbone DP, Biaggioni I, Dikov MM, Feoktistov I: Host A(2B) adenosine receptors promote carcinoma growth. Neoplasia 2008, 10:987-995.
  • [8]Synowitz M, Glass R, Färber K, Markovic D, Kronenberg G, Herrmann K, Schnermann J, Nolte C, van Rooijen N, Kiwit J, Kettenmann H: A1 adenosine receptors in microglia control glioblastoma-host interaction. Cancer Res 2006, 66:8550-8557.
  • [9]Morello S, Sorrentino R, Montinaro A, Luciano A, Maiolino P, Ngkelo A, Arra C, Adcock IM, Pinto A: NK1.1 cells and CD8 T cells mediate the antitumor activity of Cl-IB-MECA in a mouse melanoma model. Neoplasia 2011, 13:365-373.
  • [10]Beavis PA, Divisekera U, Paget C, Chow MT, John LB, Devaud C, Dwyer K, Stagg J, Smyth MJ, Darcy PK: Blockade of A2A receptors potently suppresses the metastasis of CD73+ tumors. Proc Natl Acad Sci U S A 2013, 110:14711-14716.
  • [11]Sadej R, Skladanowski AC: Dual, enzymatic and non-enzymatic, function of ecto-5′-nucleotidase (eN, CD73) in migration and invasion of A375 melanoma cells. Acta Biochim Pol 2012, 59:647-652.
  • [12]Stagg J, Divisekera U, McLaughlin N, Sharkey J, Pommey S, Denoyer D, Dwyer KM, Smyth MJ: Anti-CD73 antibody therapy inhibits breast tumor growth and metastasis. Proc Natl Acad Sci U S A 2010, 107:1547-1552.
  • [13]Koszałka P, Pryszlak A, Gołuńska M, Kolasa J, Stasiłojć G, Składanowski AC, Bigda JJ: Inhibition of CD73 stimulates the migration and invasion of B16F10 melanoma cells in vitro, but results in impaired angiogenesis and reduced melanoma growth in vivo. Oncol Rep 2014, 31:819-827.
  • [14]Stagg J, Divisekera U, Duret H, Sparwasser T, Teng MW, Darcy PK, Smyth MJ: CD73-deficient mice have increased antitumor immunity and are resistant to experimental metastasis. Cancer Res 2011, 71:2892-2900.
  • [15]Wang L, Fan J, Thompson LF, Zhang Y, Shin T, Curiel TJ, Zhang B: CD73 has distinct roles in nonhematopoietic and hematopoietic cells to promote tumor growth in mice. J Clin Invest 2011, 121:2371-2382.
  • [16]Yegutkin GG, Marttila-Ichihara F, Karikoski M, Niemelä J, Laurila JP, Elima K, Jalkanen S, Salmi M: Altered purinergic signaling in CD73-deficient mice inhibits tumor progression. Eur J Immunol 2011, 41:1231-1241.
  • [17]Forte G, Sorrentino R, Montinaro A, Luciano A, Adcock IM, Maiolino P, Arra C, Cicala C, Pinto A, Morello S: Inhibition of CD73 improves B cell-mediated anti-tumor immunity in a mouse model of melanoma. J Immunol 2012, 189:2226-2233.
  • [18]Leth-Larsen R, Lund R, Hansen HV, Laenkholm A, Tarin D, Jensen ON, Ditzel HJ: Metastasis-related plasma membrane proteins of human breast cancer cells identified by comparative quantitative mass spectrometry. Mol Cell Proteomics 2009, 8:1436-1449.
  • [19]Supernat A, Markiewicz A, Welnicka-Jaskiewicz M, Seroczynska B, Skokowski J, Sejda A, Szade J, Czapiewski P, Biernat W, Zaczek A: CD73 expression as a potential marker of good prognosis in breast carcinoma. Appl Immunohistochem Mol Morphol 2012, 20:103-107.
  • [20]Pivarcsi A, Müller A, Hippe A, Rieker J, van Lierop A, Steinhoff M, Seeliger S, Kubitza R, Pippirs U, Meller S, Gerber PA, Liersch R, Buenemann E, Sonkoly E, Wiesner U, Hoffmann TK, Schneider L, Piekorz R, Enderlein E, Reifenberger J, Rohr U, Haas R, Boukamp P, Haase I, Nürnberg B, Ruzicka T, Zlotnik A, Homey B: Tumor immune escape by the loss of homeostatic chemokine expression. Proc Natl Acad Sci U S A 2007, 104:19055-19060.
  • [21]Raz A, McLellan WL, Hart IR, Bucana CD, Hoyer LC, Sela BA, Dragsten P, Fidler IJ: Cell surface properties of B16 melanoma variants with differing metastatic potential. Cancer Res 1980, 40:1645-1651.
  • [22]Koszalka P, Ozüyaman B, Huo Y, Zernecke A, Flögel U, Braun N, Buchheiser A, Decking UK, Smith ML, Sévigny J, Gear A, Weber A, Molojavyi A, Ding Z, Weber C, Ley K, Zimmermann H, Gödecke A, Schrader J: Targeted disruption of cd73/ecto-5′-nucleotidase alters thromboregulation and augments vascular inflammatory response. Circ Res 2004, 95:814-821.
  • [23]Kisanuki YY, Hammer RE, Miyazaki J, Williams SC, Richardson JA, Yanagisawa M: Tie2-Cre transgenic mice: a new model for endothelial cell-lineage analysis in vivo. Dev Biol 2001, 230:230-242.
  • [24]Pellegatti P, Raffaghello L, Bianchi G, Piccardi F, Pistoia V, Di Virgilio F: Increased level of extracellular ATP at tumor sites: in vivo imaging with plasma membrane luciferase. PLoS One 2008, 3:e2599.
  • [25]Madi L, Bar-Yehuda S, Barer F, Ardon E, Ochaion A, Fishman P: A3 adenosine receptor activation in melanoma cells: association between receptor fate and tumor growth inhibition. J Biol Chem 2003, 278:42121-42130.
  • [26]Zigrino P, Kuhn I, Bäuerle T, Zamek J, Fox JW, Neumann S, Licht A, Schorpp-Kistner M, Angel P, Mauch C: Stromal expression of MMP-13 is required for melanoma invasion and metastasis. J Invest Dermatol 2009, 129:2686-2693.
  • [27]Sitkovsky M, Ohta A: Targeting the hypoxia-adenosinergic signaling pathway to improve the adoptive immunotherapy of cancer. J Mol Med 2013, 91:147-155.
  • [28]Ghiringhelli F, Bruchard M, Chalmin F, Rébé C: Production of adenosine by ectonucleotidases: a key factor in tumor immunoescape. J Biomed Biotechnol 2012, 2012:473712.
  • [29]Chandler CH, Chari S, Dworkin I: Does your gene need a background check? How genetic background impacts the analysis of mutations, genes, and evolution. Trends Genet 2013, 29:358-366.
  • [30]Harvey M, McArthur MJ, Montgomery CA, Bradley A, Donehower LA: Genetic background alters the spectrum of tumors that develop in p53-deficient mice. FASEB J 1993, 7:938-943.
  • [31]Thompson LF, Eltzschig HK, Ibla JC, Van De Wiele CJ, Resta R, Morote-Garcia JC, Colgan SP: Crucial role for ecto-5′-nucleotidase (CD73) in vascular leakage during hypoxia. J Exp Med 2004, 200:1395-1405.
  • [32]Baron RM, Choi AJ, Owen CA, Choi AM: Genetically manipulated mouse models of lung disease: potential and pitfalls. Am J Physiol Lung Cell Mol Physiol 2012, 302:L485-L497.
  • [33]Chassaing B, Aitken JD, Gewirtz AT, Vijay-Kumar M: Gut microbiota drives metabolic disease in immunologically altered mice. Adv Immunol 2012, 116:93-112.
  • [34]Hansen CH, Metzdorff SB, Hansen AK: Customizing laboratory mice by modifying gut microbiota and host immunity in an early “window of opportunity”. Gut Microbes 2013, 4:241-245.
  • [35]Ivanov II, Honda K: Intestinal commensal microbes as immune modulators. Cell Host Microbe 2012, 12:496-508.
  • [36]Nicklas W, Baneux P, Boot R, Decelle T, Deeny AA, Fumanelli M, Illgen-Wilcke B: Recommendations for the health monitoring of rodent and rabbit colonies in breeding and experimental units. Lab Anim 2002, 36:20-42.
  • [37]Phillis JW, Wu PH: Adenosine may regulate the vascular supply and thus the growth and spread of neoplastic tissues: a proposal. Gen Pharmacol 1981, 12:309-310.
  • [38]Böring YC, Flögel U, Jacoby C, Heil M, Schaper W, Schrader J: Lack of ecto-5′-nucleotidase (CD73) promotes arteriogenesis. Cardiovasc Res 2013, 97:88-96.
  • [39]Umapathy NS, Fan Z, Zemskov EA, Alieva IB, Black SM, Verin AD: Molecular mechanisms involved in adenosine-induced endothelial cell barrier enhancement. Vascul Pharmacol 2010, 52:199-206.
  • [40]Blay J, White TD, Hoskin DW: The extracellular fluid of solid carcinomas contains immunosuppressive concentrations of adenosine. Cancer Res 1997, 57:2602-2605.
  • [41]Sadej R, Spychala J, Skladanowski AC: Ecto-5′-nucleotidase (eN, CD73) is coexpressed with metastasis promoting antigens in human melanoma cells. Nucleosides Nucleotides Nucleic Acids 2006, 25:1119-1123.
  • [42]Wang H, Lee S, Lo Nigro C, Lattanzio L, Merlano M, Monteverde M, Matin R, Purdie K, Mladkova N, Bergamaschi D, Harwood C, Syed N, Szlosarek P, Briasoulis E, McHugh A, Thompson A, Evans A, Leigh I, Fleming C, Inman GJ, Hatzimichael E, Proby C, Crook T: NT5E (CD73) is epigenetically regulated in malignant melanoma and associated with metastatic site specificity. Br J Cancer 2012, 106:1446-1452.
  • [43]Hattori F, Ohshima Y, Seki S, Tsukimoto M, Sato M, Takenouchi T, Suzuki A, Takai E, Kitani H, Harada H, Kojima S: Feasibility study of B16 melanoma therapy using oxidized ATP to target purinergic receptor P2X7. Eur J Pharmacol 2012, 695:20-26.
  • [44]White N, Ryten M, Clayton E, Butler P, Burnstock G: P2Y purinergic receptors regulate the growth of human melanomas. Cancer Lett 2005, 224:81-91.
  文献评价指标  
  下载次数:139次 浏览次数:38次